A 0.037 pJ K 2 $\text{K}^2$ 338 pW temperature sensor based on dynamic leakage-suppression logic

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electronics Letters Pub Date : 2024-08-13 DOI:10.1049/ell2.13302
Hao Li, Zhao Yang, Dezhu Kong, Aiguo Yin, Peiyong Zhang
{"title":"A 0.037 pJ \n \n \n K\n 2\n \n $\\text{K}^2$\n 338 pW temperature sensor based on dynamic leakage-suppression logic","authors":"Hao Li,&nbsp;Zhao Yang,&nbsp;Dezhu Kong,&nbsp;Aiguo Yin,&nbsp;Peiyong Zhang","doi":"10.1049/ell2.13302","DOIUrl":null,"url":null,"abstract":"<p>This letter introduces an ultra-low-power temperature sensor utilizing dynamic leakage-suppression (DLS) logic and thoroughly analyses its working principle. The sensor effectively tackles the weak pull-up challenge inherent in DLS logic ensuring its compatibility with standard digital logic. By capitalizing on the super cut-off attribute of DLS logic, the frontend of the sensor achieves ultra-low power consumption, without compromising on measurement precision or the breadth of the temperature range. The digital part of the proposed utilizes the output frequency of the sensor's frontend as the clock source, in conjunction with an external 50 Hz reference clock, achieving a low overall power consumption. The frontend of the temperature sensor was fabricated using a 180 nm process, occupying a minimal area of 374 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>${\\mu }\\text{m}^2$</annotation>\n </semantics></math>. The digital part of the circuit is implemented using FPGA. Following a two-point calibration and system error removal, the sensor, operating at a supply voltage of 0.8 V, demonstrated a <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mi>δ</mi>\n </mrow>\n <annotation>$3\\delta$</annotation>\n </semantics></math> error of <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mn>0.54</mn>\n </mrow>\n <annotation>$\\pm 0.54$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mi>C</mi>\n </mrow>\n <annotation>$^\\circ\\text{C}$</annotation>\n </semantics></math> across the temperature range of −20 to 125 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mi>C</mi>\n </mrow>\n <annotation>$^\\circ\\text{C}$</annotation>\n </semantics></math>. At 25 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mi>C</mi>\n </mrow>\n <annotation>$^\\circ\\text{C}$</annotation>\n </semantics></math>, the resolution figure of merit of the sensor was 0.037 pJ <span></span><math>\n <semantics>\n <msup>\n <mi>K</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\text{K}^2$</annotation>\n </semantics></math>, with a maximum voltage sensitivity of 4.2 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mtext>C/V</mtext>\n </mrow>\n <annotation>$^\\circ\\text{C/V}$</annotation>\n </semantics></math>.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.13302","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.13302","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces an ultra-low-power temperature sensor utilizing dynamic leakage-suppression (DLS) logic and thoroughly analyses its working principle. The sensor effectively tackles the weak pull-up challenge inherent in DLS logic ensuring its compatibility with standard digital logic. By capitalizing on the super cut-off attribute of DLS logic, the frontend of the sensor achieves ultra-low power consumption, without compromising on measurement precision or the breadth of the temperature range. The digital part of the proposed utilizes the output frequency of the sensor's frontend as the clock source, in conjunction with an external 50 Hz reference clock, achieving a low overall power consumption. The frontend of the temperature sensor was fabricated using a 180 nm process, occupying a minimal area of 374 μ m 2 ${\mu }\text{m}^2$ . The digital part of the circuit is implemented using FPGA. Following a two-point calibration and system error removal, the sensor, operating at a supply voltage of 0.8 V, demonstrated a 3 δ $3\delta$ error of ± 0.54 $\pm 0.54$ C $^\circ\text{C}$ across the temperature range of −20 to 125 C $^\circ\text{C}$ . At 25 C $^\circ\text{C}$ , the resolution figure of merit of the sensor was 0.037 pJ K 2 $\text{K}^2$ , with a maximum voltage sensitivity of 4.2 C/V $^\circ\text{C/V}$ .

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态泄漏抑制逻辑的 0.037 pJ K 2 $text\{K}^2$ 338 pW 温度传感器
这封信介绍了一种利用动态漏电抑制(DLS)逻辑的超低功耗温度传感器,并深入分析了其工作原理。该传感器有效解决了 DLS 逻辑固有的弱上拉难题,确保了与标准数字逻辑的兼容性。通过利用 DLS 逻辑的超截止特性,传感器的前端实现了超低功耗,而不会影响测量精度或温度范围的广度。建议的数字部分利用传感器前端的输出频率作为时钟源,并结合外部 50 Hz 基准时钟,从而实现了较低的总体功耗。温度传感器的前端采用 180 纳米工艺制造,最小占地面积为 374 μ m 2 ${mu }\text{m}^2$ 。电路的数字部分采用 FPGA 实现。经过两点校准和系统误差消除,传感器在 0.8 V 电源电压下工作时,在 -20 至 125 ∘ C $^\circ\text{C}$ 的温度范围内,3 δ $3\delta$ 误差为 ± 0.54 $\pm 0.54$ ∘ C $^\circ\text{C}$ 。在 25 ∘ C $^\circ\text{C}$ 时,传感器的分辨率为 0.037 pJ K 2 $\text{K}^2$ ,最大电压灵敏度为 4.2 ∘ C/V $^\circ\text{C/V}$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
期刊最新文献
U-ONet: Remote sensing image semantic labelling based on octave convolution and coordination attention in U-shape deep neural network Active learning for efficient data selection in radio-signal-based positioning via deep learning Decoding microwave modulation transfer: The impact of dissipation through stochastic processes End-to-end speech-denoising deep neural network based on residual-attention gated linear units Dynamic pricing-based integration for non-cooperative ubiquitous sensing and communication network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1