Accelerating the discovery of acceptor materials for organic solar cells by deep learning

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-08-14 DOI:10.1038/s41524-024-01367-7
Jinyu Sun, Dongxu Li, Jie Zou, Shaofeng Zhu, Cong Xu, Yingping Zou, Zhimin Zhang, Hongmei Lu
{"title":"Accelerating the discovery of acceptor materials for organic solar cells by deep learning","authors":"Jinyu Sun, Dongxu Li, Jie Zou, Shaofeng Zhu, Cong Xu, Yingping Zou, Zhimin Zhang, Hongmei Lu","doi":"10.1038/s41524-024-01367-7","DOIUrl":null,"url":null,"abstract":"<p>It is a time-consuming and costly process to develop affordable and high-performance organic photovoltaic materials. Computational methods are essential for accelerating the material discovery process by predicting power conversion efficiencies (PCE). In this study, we propose a deep learning-based framework (DeepAcceptor) to design and discover highly efficient small molecule acceptor materials. Specifically, an experimental dataset is constructed by collecting acceptor data from publications. Then, a deep learning-based model is customized to predict PCEs by applying graph representation learning to Bidirectional Encoder Representations from Transformers (BERT), with the atom, bond, and connection information in acceptor molecular structures as the input (abcBERT). The computational dataset derived from density functional theory (DFT) calculations and the experimental dataset from literature are used to pre-train and fine-tune the model, respectively. The abcBERT model outperforms other state-of-the-art models for the PCE prediction with MAE = 1.78 and <i>R</i><sup>2</sup> = 0.67 on the test set. A molecular generation and screening process is built to find new high-performance acceptors for PM6. Three discovered candidates are further validated by experiment, and the best PCE reaches 14.61%. The released user-friendly interface of DeepAcceptor greatly boosts the accessibility and efficiency of designing and discovering high-performance acceptors. Altogether, the DeepAcceptor framework with abcBERT is promising to predict the PCE and accelerate the discovery of high-performance acceptor materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"58 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01367-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is a time-consuming and costly process to develop affordable and high-performance organic photovoltaic materials. Computational methods are essential for accelerating the material discovery process by predicting power conversion efficiencies (PCE). In this study, we propose a deep learning-based framework (DeepAcceptor) to design and discover highly efficient small molecule acceptor materials. Specifically, an experimental dataset is constructed by collecting acceptor data from publications. Then, a deep learning-based model is customized to predict PCEs by applying graph representation learning to Bidirectional Encoder Representations from Transformers (BERT), with the atom, bond, and connection information in acceptor molecular structures as the input (abcBERT). The computational dataset derived from density functional theory (DFT) calculations and the experimental dataset from literature are used to pre-train and fine-tune the model, respectively. The abcBERT model outperforms other state-of-the-art models for the PCE prediction with MAE = 1.78 and R2 = 0.67 on the test set. A molecular generation and screening process is built to find new high-performance acceptors for PM6. Three discovered candidates are further validated by experiment, and the best PCE reaches 14.61%. The released user-friendly interface of DeepAcceptor greatly boosts the accessibility and efficiency of designing and discovering high-performance acceptors. Altogether, the DeepAcceptor framework with abcBERT is promising to predict the PCE and accelerate the discovery of high-performance acceptor materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习加速发现有机太阳能电池的受体材料
开发经济实惠的高性能有机光伏材料是一个耗时费钱的过程。通过预测功率转换效率(PCE),计算方法对于加速材料发现过程至关重要。在本研究中,我们提出了一种基于深度学习的框架(DeepAcceptor),用于设计和发现高效的小分子受体材料。具体来说,我们通过收集出版物中的受体数据构建了一个实验数据集。然后,以受体分子结构中的原子、键和连接信息为输入(abcBERT),将图表示学习应用于双向变换器编码器表示(BERT),从而定制基于深度学习的模型来预测PCE。通过密度泛函理论(DFT)计算获得的计算数据集和文献中的实验数据集分别用于预训练和微调模型。在 PCE 预测方面,abcBERT 模型的 MAE = 1.78,测试集上的 R2 = 0.67,优于其他最先进的模型。建立了分子生成和筛选过程,为 PM6 寻找新的高性能受体。实验进一步验证了发现的三个候选分子,最佳 PCE 达到 14.61%。DeepAcceptor 发布的用户友好界面大大提高了设计和发现高性能受体的易用性和效率。总之,带有 abcBERT 的 DeepAcceptor 框架有望预测 PCE 并加速高性能受体材料的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1