Domain Decomposition Methods for the Monge–Ampère Equation

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-08-13 DOI:10.1137/23m1576839
Yassine Boubendir, Jake Brusca, Brittany F. Hamfeldt, Tadanaga Takahashi
{"title":"Domain Decomposition Methods for the Monge–Ampère Equation","authors":"Yassine Boubendir, Jake Brusca, Brittany F. Hamfeldt, Tadanaga Takahashi","doi":"10.1137/23m1576839","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1979-2003, August 2024. <br/> Abstract. We introduce a new overlapping domain decomposition method (DDM) to solve fully nonlinear elliptic partial differential equations (PDEs) approximated with monotone schemes. While DDMs have been extensively studied for linear problems, their application to fully nonlinear PDEs remains limited in the literature. To address this gap, we establish a proof of global convergence of these new iterative algorithms using a discrete comparison principle argument. We also provide a specific implementation for the Monge–Ampère equation. Several numerical tests are performed to validate the convergence theorem. These numerical experiments involve examples of varying regularity. Computational experiments show that method is efficient, robust, and requires relatively few iterations to converge. The results reveal great potential for DDM methods to lead to highly efficient and parallelizable solvers for large-scale problems that are computationally intractable using existing solution methods.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"14 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1576839","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1979-2003, August 2024.
Abstract. We introduce a new overlapping domain decomposition method (DDM) to solve fully nonlinear elliptic partial differential equations (PDEs) approximated with monotone schemes. While DDMs have been extensively studied for linear problems, their application to fully nonlinear PDEs remains limited in the literature. To address this gap, we establish a proof of global convergence of these new iterative algorithms using a discrete comparison principle argument. We also provide a specific implementation for the Monge–Ampère equation. Several numerical tests are performed to validate the convergence theorem. These numerical experiments involve examples of varying regularity. Computational experiments show that method is efficient, robust, and requires relatively few iterations to converge. The results reveal great potential for DDM methods to lead to highly efficient and parallelizable solvers for large-scale problems that are computationally intractable using existing solution methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒙日-安培方程的领域分解方法
SIAM 数值分析期刊》,第 62 卷第 4 期,第 1979-2003 页,2024 年 8 月。 摘要。我们介绍了一种新的重叠域分解方法 (DDM),用于求解用单调方案逼近的全非线性椭圆偏微分方程 (PDE)。虽然 DDM 已针对线性问题进行了广泛研究,但其在全非线性偏微分方程中的应用在文献中仍然有限。为了填补这一空白,我们利用离散比较原理论证了这些新迭代算法的全局收敛性。我们还提供了 Monge-Ampère 方程的具体实现方法。为了验证收敛定理,我们进行了一些数值测试。这些数值实验涉及不同规律性的例子。计算实验表明,该方法高效、稳健,只需相对较少的迭代即可收敛。这些结果揭示了 DDM 方法的巨大潜力,它可以为现有求解方法难以计算的大规模问题提供高效、可并行的求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes A Domain Decomposition Method for Stochastic Evolution Equations New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1