Lili Yang, Chao Wang, Yuan Zeng, Yuqin Song, Gang Zhang, Dawei Wei, Yalin Li, Jie Feng
{"title":"Characterization of a novel phage against multidrug-resistant Klebsiella pneumoniae","authors":"Lili Yang, Chao Wang, Yuan Zeng, Yuqin Song, Gang Zhang, Dawei Wei, Yalin Li, Jie Feng","doi":"10.1007/s00203-024-04106-0","DOIUrl":null,"url":null,"abstract":"<div><p>Multidrug-resistant <i>Klebsiella pneumoniae</i> (MDR-KP) poses a significant challenge in global healthcare, underscoring the urgency for innovative therapeutic approaches. Phage therapy emerges as a promising strategy amidst rising antibiotic resistance, emphasizing the crucial need to identify and characterize effective phage resources for clinical use. In this study, we introduce a novel lytic phage, RCIP0100, distinguished by its classification into the <i>Chaoyangvirus</i> genus and <i>Fjlabviridae</i> family based on International Committee on Taxonomy of Viruses (ICTV) criteria due to low genetic similarity to known phage families. Our findings demonstrate that RCIP0100 exhibits broad lytic activity against 15 out of 27 tested MDR-KP strains, including diverse profiles such as carbapenem-resistant <i>K. pneumoniae</i> (CR-KP). This positions phage RCIP0100 as a promising candidate for phage therapy. Strains resistant to RCIP0100 also showed increased susceptibility to various antibiotics, implying the potential for synergistic use of RCIP0100 and antibiotics as a strategic countermeasure against MDR-KP.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04106-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant challenge in global healthcare, underscoring the urgency for innovative therapeutic approaches. Phage therapy emerges as a promising strategy amidst rising antibiotic resistance, emphasizing the crucial need to identify and characterize effective phage resources for clinical use. In this study, we introduce a novel lytic phage, RCIP0100, distinguished by its classification into the Chaoyangvirus genus and Fjlabviridae family based on International Committee on Taxonomy of Viruses (ICTV) criteria due to low genetic similarity to known phage families. Our findings demonstrate that RCIP0100 exhibits broad lytic activity against 15 out of 27 tested MDR-KP strains, including diverse profiles such as carbapenem-resistant K. pneumoniae (CR-KP). This positions phage RCIP0100 as a promising candidate for phage therapy. Strains resistant to RCIP0100 also showed increased susceptibility to various antibiotics, implying the potential for synergistic use of RCIP0100 and antibiotics as a strategic countermeasure against MDR-KP.