Joseph D Butner, Prashant Dogra, Caroline Chung, Eugene J Koay, James W Welsh, David S Hong, Vittorio Cristini, Zhihui Wang
{"title":"Hybridizing mechanistic modeling and deep learning for personalized survival prediction after immune checkpoint inhibitor immunotherapy.","authors":"Joseph D Butner, Prashant Dogra, Caroline Chung, Eugene J Koay, James W Welsh, David S Hong, Vittorio Cristini, Zhihui Wang","doi":"10.1038/s41540-024-00415-8","DOIUrl":null,"url":null,"abstract":"<p><p>We present a study where predictive mechanistic modeling is combined with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) immunotherapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models of key mechanisms underlying ICI therapy that may not be directly measurable in the clinic and easily measurable quantities or patient characteristics that are not always readily incorporated into predictive mechanistic models. A deep learning time-to-event predictive model trained on a hybrid mechanistic + clinical data set from 93 patients achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when trained on only mechanistic model-derived values or only clinical data. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in increasing prediction accuracy, further supporting the advantage of our hybrid approach.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00415-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a study where predictive mechanistic modeling is combined with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) immunotherapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models of key mechanisms underlying ICI therapy that may not be directly measurable in the clinic and easily measurable quantities or patient characteristics that are not always readily incorporated into predictive mechanistic models. A deep learning time-to-event predictive model trained on a hybrid mechanistic + clinical data set from 93 patients achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when trained on only mechanistic model-derived values or only clinical data. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in increasing prediction accuracy, further supporting the advantage of our hybrid approach.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.