Pub Date : 2025-02-15DOI: 10.1038/s41540-025-00492-3
Adam A Malik, Kyle C Nguyen, John T Nardini, Cecilia C Krona, Kevin B Flores, Sven Nelander
In the study of brain tumors, patient-derived three-dimensional sphere cultures provide an important tool for studying emerging treatments. The growth of such spheroids depends on the combined effects of proliferation and migration of cells, but it is challenging to make accurate distinctions between increase in cell number versus the radial movement of cells. To address this, we formulate a novel model in the form of a system of two partial differential equations (PDEs) incorporating both migration and growth terms, and show that it more accurately fits our data compared to simpler PDE models. We show that traveling-wave speeds are strongly associated with population heterogeneity. Having fitted the model to our dataset we show that a subset of the cell lines are best described by a "Go-or-Grow"-type model, which constitutes a special case of our model. Finally, we investigate whether our fitted model parameters are correlated with patient age and survival.
{"title":"Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity.","authors":"Adam A Malik, Kyle C Nguyen, John T Nardini, Cecilia C Krona, Kevin B Flores, Sven Nelander","doi":"10.1038/s41540-025-00492-3","DOIUrl":"10.1038/s41540-025-00492-3","url":null,"abstract":"<p><p>In the study of brain tumors, patient-derived three-dimensional sphere cultures provide an important tool for studying emerging treatments. The growth of such spheroids depends on the combined effects of proliferation and migration of cells, but it is challenging to make accurate distinctions between increase in cell number versus the radial movement of cells. To address this, we formulate a novel model in the form of a system of two partial differential equations (PDEs) incorporating both migration and growth terms, and show that it more accurately fits our data compared to simpler PDE models. We show that traveling-wave speeds are strongly associated with population heterogeneity. Having fitted the model to our dataset we show that a subset of the cell lines are best described by a \"Go-or-Grow\"-type model, which constitutes a special case of our model. Finally, we investigate whether our fitted model parameters are correlated with patient age and survival.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"20"},"PeriodicalIF":3.5,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition characterized by airflow obstruction. Current diagnostic methods primarily rely on identifying prominent features in spirometry (Volume-Flow time series) to detect COPD, but they are not adept at predicting future COPD risk based on subtle data patterns. In this study, we introduce a novel deep learning-based approach, DeepSpiro, aimed at the early prediction of future COPD risk. DeepSpiro consists of four key components: SpiroSmoother for stabilizing the Volume-Flow curve, SpiroEncoder for capturing volume variability-pattern through key patches of varying lengths, SpiroExplainer for integrating heterogeneous data and explaining predictions through volume attention, and SpiroPredictor for predicting the disease risk of undiagnosed high-risk patients based on key patch concavity, with prediction horizons of 1-5 years, or even longer. Evaluated on the UK Biobank dataset, DeepSpiro achieved an AUC of 0.8328 for COPD detection and demonstrated strong predictive performance for future COPD risk (p-value < 0.001). In summary, DeepSpiro can effectively predict the long-term progression of COPD disease.
{"title":"Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series.","authors":"Shuhao Mei, Xin Li, Yuxi Zhou, Jiahao Xu, Yong Zhang, Yuxuan Wan, Shan Cao, Qinghao Zhao, Shijia Geng, Junqing Xie, Shengyong Chen, Shenda Hong","doi":"10.1038/s41540-025-00489-y","DOIUrl":"10.1038/s41540-025-00489-y","url":null,"abstract":"<p><p>Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition characterized by airflow obstruction. Current diagnostic methods primarily rely on identifying prominent features in spirometry (Volume-Flow time series) to detect COPD, but they are not adept at predicting future COPD risk based on subtle data patterns. In this study, we introduce a novel deep learning-based approach, DeepSpiro, aimed at the early prediction of future COPD risk. DeepSpiro consists of four key components: SpiroSmoother for stabilizing the Volume-Flow curve, SpiroEncoder for capturing volume variability-pattern through key patches of varying lengths, SpiroExplainer for integrating heterogeneous data and explaining predictions through volume attention, and SpiroPredictor for predicting the disease risk of undiagnosed high-risk patients based on key patch concavity, with prediction horizons of 1-5 years, or even longer. Evaluated on the UK Biobank dataset, DeepSpiro achieved an AUC of 0.8328 for COPD detection and demonstrated strong predictive performance for future COPD risk (p-value < 0.001). In summary, DeepSpiro can effectively predict the long-term progression of COPD disease.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"18"},"PeriodicalIF":3.5,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-15DOI: 10.1038/s41540-024-00487-6
Krista M Pullen, Ryan Finethy, Seung-Hyun B Ko, Charlotte J Reames, Christopher M Sassetti, Douglas A Lauffenburger
Numerous studies have identified similarities in blood transcriptomic signatures of tuberculosis (TB) phenotypes between mice and humans, including type 1 interferon production and innate immune cell activation. However, murine infection pathophysiology is distinct from human disease. We hypothesized that this is partly due to differences in the relative importance of biological pathways across species. To address this animal-to-human gap, we applied a systems modeling framework, Translatable Components Regression, to identify the axes of variation in the preclinical data most relevant to human TB disease state. Among the pathways our cross-species model pinpointed as highly predictive of human TB phenotype was the infection-induced unfolded protein response. To validate this mechanism, we confirmed that this cellular stress pathway modulates immune functions in Mycobacterium tuberculosis-infected mouse macrophages. Our work demonstrates how systems-level computational models enhance the value of animal studies for elucidating complex human pathophysiology.
{"title":"Cross-species transcriptomics translation reveals a role for the unfolded protein response in Mycobacterium tuberculosis infection.","authors":"Krista M Pullen, Ryan Finethy, Seung-Hyun B Ko, Charlotte J Reames, Christopher M Sassetti, Douglas A Lauffenburger","doi":"10.1038/s41540-024-00487-6","DOIUrl":"10.1038/s41540-024-00487-6","url":null,"abstract":"<p><p>Numerous studies have identified similarities in blood transcriptomic signatures of tuberculosis (TB) phenotypes between mice and humans, including type 1 interferon production and innate immune cell activation. However, murine infection pathophysiology is distinct from human disease. We hypothesized that this is partly due to differences in the relative importance of biological pathways across species. To address this animal-to-human gap, we applied a systems modeling framework, Translatable Components Regression, to identify the axes of variation in the preclinical data most relevant to human TB disease state. Among the pathways our cross-species model pinpointed as highly predictive of human TB phenotype was the infection-induced unfolded protein response. To validate this mechanism, we confirmed that this cellular stress pathway modulates immune functions in Mycobacterium tuberculosis-infected mouse macrophages. Our work demonstrates how systems-level computational models enhance the value of animal studies for elucidating complex human pathophysiology.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"19"},"PeriodicalIF":3.5,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s41540-025-00497-y
Ohad Golan, Olivia Gampp, Lina Eckert, Uwe Sauer
Microorganisms primarily utilize nutrients to generate biomass and replicate. When a single nutrient source is available, the produced biomass typically increases linearly with the initial amount of that nutrient. This linear trend can be accurately predicted by "black box models", which conceptualize growth as a single chemical reaction, treating nutrients as substrates and biomass as a product. However, natural environments usually present multiple nutrient sources, prompting us to extend the black box framework to incorporate catabolism, anabolism, and biosynthesis of biomass precursors. This modification allows for the quantification of co-utilization effects among multiple nutrients on microbial biomass production. The extended model differentiates between different types of nutrients: non-degradable nutrients, which can only serve as a biomass precursor, and degradable nutrients, which can also be used as an energy source. We experimentally demonstrated using Escherichia coli that, in contrast to initial model predictions, different nutrients affect each other's utilization in a mutually dependent manner; i.e., for some combinations, the produced biomass was no longer proportional to the initial amounts of nutrients present. To account for these mutual effects within a black box framework, we phenomenologically introduced an interaction between the metabolic processes involved in utilizing the nutrient sources. This phenomenological model qualitatively captures the experimental observations and, unexpectedly, predicts that the total produced biomass is influenced not only by the combination of nutrient sources but also by their relative initial amounts - a prediction we subsequently validated experimentally. Moreover, the model identifies which metabolic processes - catabolism, anabolism, or precursor biosynthesis-is affected in each specific nutrient combination, offering insights into microbial metabolic coordination.
{"title":"Overall biomass yield on multiple nutrient sources.","authors":"Ohad Golan, Olivia Gampp, Lina Eckert, Uwe Sauer","doi":"10.1038/s41540-025-00497-y","DOIUrl":"10.1038/s41540-025-00497-y","url":null,"abstract":"<p><p>Microorganisms primarily utilize nutrients to generate biomass and replicate. When a single nutrient source is available, the produced biomass typically increases linearly with the initial amount of that nutrient. This linear trend can be accurately predicted by \"black box models\", which conceptualize growth as a single chemical reaction, treating nutrients as substrates and biomass as a product. However, natural environments usually present multiple nutrient sources, prompting us to extend the black box framework to incorporate catabolism, anabolism, and biosynthesis of biomass precursors. This modification allows for the quantification of co-utilization effects among multiple nutrients on microbial biomass production. The extended model differentiates between different types of nutrients: non-degradable nutrients, which can only serve as a biomass precursor, and degradable nutrients, which can also be used as an energy source. We experimentally demonstrated using Escherichia coli that, in contrast to initial model predictions, different nutrients affect each other's utilization in a mutually dependent manner; i.e., for some combinations, the produced biomass was no longer proportional to the initial amounts of nutrients present. To account for these mutual effects within a black box framework, we phenomenologically introduced an interaction between the metabolic processes involved in utilizing the nutrient sources. This phenomenological model qualitatively captures the experimental observations and, unexpectedly, predicts that the total produced biomass is influenced not only by the combination of nutrient sources but also by their relative initial amounts - a prediction we subsequently validated experimentally. Moreover, the model identifies which metabolic processes - catabolism, anabolism, or precursor biosynthesis-is affected in each specific nutrient combination, offering insights into microbial metabolic coordination.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"17"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1038/s41540-025-00495-0
Anna K Kraut, Colleen M Garvey, Carly Strelez, Shannon M Mumenthaler, Jasmine Foo
Complex interactions between stromal cells, tumor cells and therapies can influence environmental factors that in turn impact anticancer treatment efficacy. Disentangling these phenomena is critical for understanding treatment response and designing effective dosing strategies. We propose a mathematical model for a common tumor-stromal interaction motif where stromal cells secrete factors that promote drug resistance. We demonstrate that the presence of this interaction modulates the therapeutic dose window of efficacy and can lead to nonmonotonic treatment response. We consider combination strategies that target stromal cells and their secretome, and identify strategies that constrain drug concentrations within the efficacious window for long-term response. We explore an experimental dataset from colorectal cancer cells treated with anti-EGFR targeting therapy, cetuximab, where cancer-associated fibroblasts increase epidermal growth factor secretion under treatment. We apply our general approach to identify a critical drug concentration threshold and study effective dosing regimens for single-drug and combination therapies.
{"title":"Modeling critical dosing strategies for stromal-induced resistance to cancer therapy.","authors":"Anna K Kraut, Colleen M Garvey, Carly Strelez, Shannon M Mumenthaler, Jasmine Foo","doi":"10.1038/s41540-025-00495-0","DOIUrl":"10.1038/s41540-025-00495-0","url":null,"abstract":"<p><p>Complex interactions between stromal cells, tumor cells and therapies can influence environmental factors that in turn impact anticancer treatment efficacy. Disentangling these phenomena is critical for understanding treatment response and designing effective dosing strategies. We propose a mathematical model for a common tumor-stromal interaction motif where stromal cells secrete factors that promote drug resistance. We demonstrate that the presence of this interaction modulates the therapeutic dose window of efficacy and can lead to nonmonotonic treatment response. We consider combination strategies that target stromal cells and their secretome, and identify strategies that constrain drug concentrations within the efficacious window for long-term response. We explore an experimental dataset from colorectal cancer cells treated with anti-EGFR targeting therapy, cetuximab, where cancer-associated fibroblasts increase epidermal growth factor secretion under treatment. We apply our general approach to identify a critical drug concentration threshold and study effective dosing regimens for single-drug and combination therapies.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"16"},"PeriodicalIF":3.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-04DOI: 10.1038/s41540-025-00496-z
Meera Kannan, Gabrielle Bridgewater, Ming Zhang, Michael L Blinov
Predictive mathematical modeling is an essential part of systems biology and is interconnected with information management. Systems biology information is often stored in specialized formats to facilitate data storage and analysis. These formats are not designed for easy human readability and thus require specialized software to visualize and interpret results. Therefore, comprehending modeling and underlying networks and pathways is contingent on mastering systems biology tools, which is particularly challenging for users with no or little background in data science or system biology. To address this challenge, we investigated the usage of public Artificial Intelligence (AI) tools in exploring systems biology resources in mathematical modeling. We tested public AI's understanding of mathematics in models, related systems biology data, and the complexity of model structures. Our approach can enhance the accessibility of systems biology for non-system biologists and help them understand systems biology without a deep learning curve.
{"title":"Leveraging public AI tools to explore systems biology resources in mathematical modeling.","authors":"Meera Kannan, Gabrielle Bridgewater, Ming Zhang, Michael L Blinov","doi":"10.1038/s41540-025-00496-z","DOIUrl":"10.1038/s41540-025-00496-z","url":null,"abstract":"<p><p>Predictive mathematical modeling is an essential part of systems biology and is interconnected with information management. Systems biology information is often stored in specialized formats to facilitate data storage and analysis. These formats are not designed for easy human readability and thus require specialized software to visualize and interpret results. Therefore, comprehending modeling and underlying networks and pathways is contingent on mastering systems biology tools, which is particularly challenging for users with no or little background in data science or system biology. To address this challenge, we investigated the usage of public Artificial Intelligence (AI) tools in exploring systems biology resources in mathematical modeling. We tested public AI's understanding of mathematics in models, related systems biology data, and the complexity of model structures. Our approach can enhance the accessibility of systems biology for non-system biologists and help them understand systems biology without a deep learning curve.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"15"},"PeriodicalIF":3.5,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1038/s41540-025-00493-2
Brandon Bumbaca, Jonah R Huggins, Marc R Birtwistle, James M Gallo
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e., phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
{"title":"Network analyses of brain tumor multiomic data reveal pharmacological opportunities to alter cell state transitions.","authors":"Brandon Bumbaca, Jonah R Huggins, Marc R Birtwistle, James M Gallo","doi":"10.1038/s41540-025-00493-2","DOIUrl":"10.1038/s41540-025-00493-2","url":null,"abstract":"<p><p>Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e., phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"14"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1038/s41540-024-00479-6
Sofia Tseranidou, Maria Segarra-Queralt, Francis Kiptengwer Chemorion, Christine Lyn Le Maitre, Janet Piñero, Jérôme Noailly
Intervertebral disc degeneration (IDD) results from an imbalance between anabolic and catabolic processes in the extracellular matrix (ECM). Due to complex biochemical interactions, a comprehensive understanding is needed. This study presents a regulatory network model (RNM) for nucleus pulposus cells (NPC), representing normal intervertebral disc (IVD) conditions. The RNM includes 33 proteins, and 153 interactions based on literature, incorporating key NPC regulatory mechanisms. A semi-quantitative approach calculates the basal steady state, accurately reflecting normal NPC activity. Model validation through published studies replicated pro-catabolic and pro-anabolic shifts, emphasizing the roles of transforming growth factor beta (TGF-β) and interleukin-1 receptor antagonist (IL-1Ra) in ECM regulation. This IVD RNM is a valuable tool for predicting IDD progression, offering insights into ECM degradation mechanisms and guiding experimental research on IVD health and degeneration.
{"title":"Nucleus pulposus cell network modelling in the intervertebral disc.","authors":"Sofia Tseranidou, Maria Segarra-Queralt, Francis Kiptengwer Chemorion, Christine Lyn Le Maitre, Janet Piñero, Jérôme Noailly","doi":"10.1038/s41540-024-00479-6","DOIUrl":"10.1038/s41540-024-00479-6","url":null,"abstract":"<p><p>Intervertebral disc degeneration (IDD) results from an imbalance between anabolic and catabolic processes in the extracellular matrix (ECM). Due to complex biochemical interactions, a comprehensive understanding is needed. This study presents a regulatory network model (RNM) for nucleus pulposus cells (NPC), representing normal intervertebral disc (IVD) conditions. The RNM includes 33 proteins, and 153 interactions based on literature, incorporating key NPC regulatory mechanisms. A semi-quantitative approach calculates the basal steady state, accurately reflecting normal NPC activity. Model validation through published studies replicated pro-catabolic and pro-anabolic shifts, emphasizing the roles of transforming growth factor beta (TGF-β) and interleukin-1 receptor antagonist (IL-1Ra) in ECM regulation. This IVD RNM is a valuable tool for predicting IDD progression, offering insights into ECM degradation mechanisms and guiding experimental research on IVD health and degeneration.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"13"},"PeriodicalIF":3.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1038/s41540-025-00494-1
Niki Tavakoli, Emma J Fong, Abigail Coleman, Yu-Kai Huang, Mathias Bigger, Michael E Doche, Seungil Kim, Heinz-Josef Lenz, Nicholas A Graham, Paul Macklin, Stacey D Finley, Shannon M Mumenthaler
Cancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved a novel machine learning-based method to computationally screen, in a high-throughput manner, the effects of enzyme perturbations predicted by a computational model of CRC metabolism. This approach reveals the network-wide effects of metabolic perturbations. Our results highlighted hexokinase (HK) as a crucial target, which subsequently became our focus for experimental validation using patient-derived tumor organoids (PDTOs). Through metabolic imaging and viability assays, we found that PDTOs cultured in CAF-conditioned media exhibited increased sensitivity to HK inhibition, confirming the model predictions. Our approach emphasizes the critical role of integrating computational and experimental techniques in exploring and exploiting CRC-CAF crosstalk.
{"title":"Merging metabolic modeling and imaging for screening therapeutic targets in colorectal cancer.","authors":"Niki Tavakoli, Emma J Fong, Abigail Coleman, Yu-Kai Huang, Mathias Bigger, Michael E Doche, Seungil Kim, Heinz-Josef Lenz, Nicholas A Graham, Paul Macklin, Stacey D Finley, Shannon M Mumenthaler","doi":"10.1038/s41540-025-00494-1","DOIUrl":"10.1038/s41540-025-00494-1","url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved a novel machine learning-based method to computationally screen, in a high-throughput manner, the effects of enzyme perturbations predicted by a computational model of CRC metabolism. This approach reveals the network-wide effects of metabolic perturbations. Our results highlighted hexokinase (HK) as a crucial target, which subsequently became our focus for experimental validation using patient-derived tumor organoids (PDTOs). Through metabolic imaging and viability assays, we found that PDTOs cultured in CAF-conditioned media exhibited increased sensitivity to HK inhibition, confirming the model predictions. Our approach emphasizes the critical role of integrating computational and experimental techniques in exploring and exploiting CRC-CAF crosstalk.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"12"},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learning-based approach utilizing resected lung-tissue microbiome of AC and SCC patients for subtype classification. Differentially enriched taxa were identified using LEfSe, revealing ten potential microbial markers. Linear discriminant analysis (LDA) was subsequently applied to enhance inter-class separability. Next, benchmarking was performed across six different supervised-classification algorithms viz. logistic-regression, naïve-bayes, random-forest, extreme-gradient-boost (XGBoost), k-nearest neighbor, and deep neural network. Noteworthy, XGBoost, with an accuracy of 76.25%, and AUROC (area-under-receiver-operating-characteristic) of 0.81 with 69% specificity and 76% sensitivity, outperform the other five classification algorithms using LDA-transformed features. Validation on an independent dataset confirmed its robustness with an AUROC of 0.71, with minimal false positives and negatives. This study is the first to classify AC and SCC subtypes using lung-tissue microbiome.
{"title":"Classification of NSCLC subtypes using lung microbiome from resected tissue based on machine learning methods.","authors":"Pragya Kashyap, Kalbhavi Vadhi Raj, Jyoti Sharma, Naveen Dutt, Pankaj Yadav","doi":"10.1038/s41540-025-00491-4","DOIUrl":"10.1038/s41540-025-00491-4","url":null,"abstract":"<p><p>Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learning-based approach utilizing resected lung-tissue microbiome of AC and SCC patients for subtype classification. Differentially enriched taxa were identified using LEfSe, revealing ten potential microbial markers. Linear discriminant analysis (LDA) was subsequently applied to enhance inter-class separability. Next, benchmarking was performed across six different supervised-classification algorithms viz. logistic-regression, naïve-bayes, random-forest, extreme-gradient-boost (XGBoost), k-nearest neighbor, and deep neural network. Noteworthy, XGBoost, with an accuracy of 76.25%, and AUROC (area-under-receiver-operating-characteristic) of 0.81 with 69% specificity and 76% sensitivity, outperform the other five classification algorithms using LDA-transformed features. Validation on an independent dataset confirmed its robustness with an AUROC of 0.71, with minimal false positives and negatives. This study is the first to classify AC and SCC subtypes using lung-tissue microbiome.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"11"},"PeriodicalIF":3.5,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}