Joshua D Herman, Rachel E Roca, Alexandra G O'Neill, Marcus L Wong, Sajan Goud Lingala, Angel R Pineda
{"title":"Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection.","authors":"Joshua D Herman, Rachel E Roca, Alexandra G O'Neill, Marcus L Wong, Sajan Goud Lingala, Angel R Pineda","doi":"10.1117/1.JMI.11.4.045503","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recent research explores using neural networks to reconstruct undersampled magnetic resonance imaging. Because of the complexity of the artifacts in the reconstructed images, there is a need to develop task-based approaches to image quality. We compared conventional global quantitative metrics to evaluate image quality in undersampled images generated by a neural network with human observer performance in a detection task. The purpose is to study which acceleration (2×, 3×, 4×, 5×) would be chosen with the conventional metrics and compare it to the acceleration chosen by human observer performance.</p><p><strong>Approach: </strong>We used common global metrics for evaluating image quality: the normalized root mean squared error (NRMSE) and structural similarity (SSIM). These metrics are compared with a measure of image quality that incorporates a subtle signal for a specific task to allow for image quality assessment that locally evaluates the effect of undersampling on a signal. We used a U-Net to reconstruct under-sampled images with 2×, 3×, 4×, and 5× one-dimensional undersampling rates. Cross-validation was performed for a 500- and a 4000-image training set with both SSIM and MSE losses. A two-alternative forced choice (2-AFC) observer study was carried out for detecting a subtle signal (small blurred disk) from images with the 4000-image training set.</p><p><strong>Results: </strong>We found that for both loss functions, the human observer performance on the 2-AFC studies led to a choice of a 2× undersampling, but the SSIM and NRMSE led to a choice of a 3× undersampling.</p><p><strong>Conclusions: </strong>For this detection task using a subtle small signal at the edge of detectability, SSIM and NRMSE led to an overestimate of the achievable undersampling using a U-Net before a steep loss of image quality between 2×, 3×, 4×, 5× undersampling rates when compared to the performance of human observers in the detection task.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"045503"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.045503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Recent research explores using neural networks to reconstruct undersampled magnetic resonance imaging. Because of the complexity of the artifacts in the reconstructed images, there is a need to develop task-based approaches to image quality. We compared conventional global quantitative metrics to evaluate image quality in undersampled images generated by a neural network with human observer performance in a detection task. The purpose is to study which acceleration (2×, 3×, 4×, 5×) would be chosen with the conventional metrics and compare it to the acceleration chosen by human observer performance.
Approach: We used common global metrics for evaluating image quality: the normalized root mean squared error (NRMSE) and structural similarity (SSIM). These metrics are compared with a measure of image quality that incorporates a subtle signal for a specific task to allow for image quality assessment that locally evaluates the effect of undersampling on a signal. We used a U-Net to reconstruct under-sampled images with 2×, 3×, 4×, and 5× one-dimensional undersampling rates. Cross-validation was performed for a 500- and a 4000-image training set with both SSIM and MSE losses. A two-alternative forced choice (2-AFC) observer study was carried out for detecting a subtle signal (small blurred disk) from images with the 4000-image training set.
Results: We found that for both loss functions, the human observer performance on the 2-AFC studies led to a choice of a 2× undersampling, but the SSIM and NRMSE led to a choice of a 3× undersampling.
Conclusions: For this detection task using a subtle small signal at the edge of detectability, SSIM and NRMSE led to an overestimate of the achievable undersampling using a U-Net before a steep loss of image quality between 2×, 3×, 4×, 5× undersampling rates when compared to the performance of human observers in the detection task.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.