Agreement between an automated video-based system and tethered system to measure instantaneous swimming velocity.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-15 DOI:10.1080/14763141.2024.2388572
Michelle Scott, Nathan Elsworthy, Victoria Brackley, Marc Elipot, Crystal O Kean
{"title":"Agreement between an automated video-based system and tethered system to measure instantaneous swimming velocity.","authors":"Michelle Scott, Nathan Elsworthy, Victoria Brackley, Marc Elipot, Crystal O Kean","doi":"10.1080/14763141.2024.2388572","DOIUrl":null,"url":null,"abstract":"<p><p>Successful performance in competitive swimming requires a swimmer to maximise propulsion and minimise drag, which can be assessed using instantaneous swimming velocity. Many systems exist to quantify velocity, and therefore, it is important to understand the agreement between systems. This study examined the agreement between an automated video-based system and a tethered system to measure instantaneous velocity. Twenty-two competitive swimmers (state level or higher) completed 25 m of each stroke at maximal intensity. The tethered speedometer was attached to the swimmer's waist, while videos of each trial were recorded. The swimmer's head was then automatically tracked using proprietary software, and instantaneous velocity was determined from each system. Bland-Altman plots showed good agreement between the two systems in backstroke (95% Limits of Agreement (LOA): -0.24-0.26 m.s<sup>-1</sup>) and freestyle (95% LOA: -0.36-0.38 m.s<sup>-1</sup>) but poorer agreement in butterfly (95% LOA: -0.51-0.53 m.s<sup>-1</sup>) and breaststroke (95% LOA: -0.88-0.92 m.s<sup>-1</sup>). The root mean square error was higher in butterfly (0.27 m.s<sup>-1</sup>) and breaststroke (0.46 m.s<sup>-1</sup>) compared to backstroke (0.13 m.s<sup>-1</sup>) and freestyle (0.19 m.s<sup>-1</sup>). Results demonstrated that the two systems are comparable for measuring instantaneous swimming velocity; however, larger discrepancies are evident for butterfly and breaststroke.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2388572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Successful performance in competitive swimming requires a swimmer to maximise propulsion and minimise drag, which can be assessed using instantaneous swimming velocity. Many systems exist to quantify velocity, and therefore, it is important to understand the agreement between systems. This study examined the agreement between an automated video-based system and a tethered system to measure instantaneous velocity. Twenty-two competitive swimmers (state level or higher) completed 25 m of each stroke at maximal intensity. The tethered speedometer was attached to the swimmer's waist, while videos of each trial were recorded. The swimmer's head was then automatically tracked using proprietary software, and instantaneous velocity was determined from each system. Bland-Altman plots showed good agreement between the two systems in backstroke (95% Limits of Agreement (LOA): -0.24-0.26 m.s-1) and freestyle (95% LOA: -0.36-0.38 m.s-1) but poorer agreement in butterfly (95% LOA: -0.51-0.53 m.s-1) and breaststroke (95% LOA: -0.88-0.92 m.s-1). The root mean square error was higher in butterfly (0.27 m.s-1) and breaststroke (0.46 m.s-1) compared to backstroke (0.13 m.s-1) and freestyle (0.19 m.s-1). Results demonstrated that the two systems are comparable for measuring instantaneous swimming velocity; however, larger discrepancies are evident for butterfly and breaststroke.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动视频系统与系留系统测量瞬时游泳速度的一致性。
要想在竞技游泳中取得好成绩,游泳运动员必须最大限度地提高推进力,同时最大限度地降低阻力,这可以通过瞬时游泳速度来评估。目前有许多系统可以量化速度,因此了解不同系统之间的一致性非常重要。本研究考察了基于视频的自动系统和系绳系统测量瞬时速度的一致性。22 名竞技游泳运动员(州级或州级以上)以最大强度完成了每种划水动作 25 米。系绳速度计系在游泳者的腰部,同时记录每次试验的视频。然后使用专有软件自动跟踪游泳者的头部,并根据每个系统确定瞬时速度。Bland-Altman 图显示,两种系统在仰泳(95% 一致度 (LOA):-0.24-0.26 m.s-1)和自由泳(95% 一致度 (LOA):-0.36-0.38 m.s-1)中的一致性较好,但在蝶泳(95% 一致度 (LOA):-0.51-0.53 m.s-1)和蛙泳(95% 一致度 (LOA):-0.88-0.92 m.s-1)中的一致性较差。蝶泳(0.27 m.s-1)和蛙泳(0.46 m.s-1)的均方根误差高于仰泳(0.13 m.s-1)和自由泳(0.19 m.s-1)。结果表明,在测量瞬时游泳速度方面,两种系统具有可比性;但在测量蝶泳和蛙泳时,差异较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1