Shuyang Zhang , Weidong Li , Ming Fang , Zhaoli Guo
{"title":"A discrete unified gas kinetic scheme with sparse velocity grid for rarefied gas flows","authors":"Shuyang Zhang , Weidong Li , Ming Fang , Zhaoli Guo","doi":"10.1016/j.compfluid.2024.106391","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a discrete unified gas kinetic scheme (DUGKS) with a sparse grid method applied in velocity space (DUGKS-SG) is proposed for simulating rarefied gas flows. The DUGKS-SG decomposes the computationally demanding problem into smaller and independent subproblems, thereby reducing the computational costs and exhibiting good parallelism. Several numerical tests, including the two-dimensional Riemann problem and the lid-driven microcavity flow, have been conducted to validate the performance of the DUGKS-SG. Comparisons with the original DUGKS and the Direct Simulation Monte Carlo (DSMC) method demonstrate that DUGKS-SG can provide satisfactory results with improved efficiency. Specifically, a maximum speedup of 9.486 for a 2D case with 7 CPU cores and 13.035 for a 3D case with 8 CPU cores can be achieved. These results suggest that the proposed DUGKS-SG can serve as an efficient numerical method for rarefied gas flow simulations.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"283 ","pages":"Article 106391"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024002238","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a discrete unified gas kinetic scheme (DUGKS) with a sparse grid method applied in velocity space (DUGKS-SG) is proposed for simulating rarefied gas flows. The DUGKS-SG decomposes the computationally demanding problem into smaller and independent subproblems, thereby reducing the computational costs and exhibiting good parallelism. Several numerical tests, including the two-dimensional Riemann problem and the lid-driven microcavity flow, have been conducted to validate the performance of the DUGKS-SG. Comparisons with the original DUGKS and the Direct Simulation Monte Carlo (DSMC) method demonstrate that DUGKS-SG can provide satisfactory results with improved efficiency. Specifically, a maximum speedup of 9.486 for a 2D case with 7 CPU cores and 13.035 for a 3D case with 8 CPU cores can be achieved. These results suggest that the proposed DUGKS-SG can serve as an efficient numerical method for rarefied gas flow simulations.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.