Joseph R. Doherty, Wendell J. Hutchens, Jordan C. Booth, David S. McCall, Michael V. Battaglia, Eric J. DeBoer, Joseph A. Roberts
{"title":"Improving winter survival of interspecific hybrid bermudagrass in the Mid-Atlantic region through cultural practices","authors":"Joseph R. Doherty, Wendell J. Hutchens, Jordan C. Booth, David S. McCall, Michael V. Battaglia, Eric J. DeBoer, Joseph A. Roberts","doi":"10.1002/cft2.20303","DOIUrl":null,"url":null,"abstract":"<p>Winter injury can cause significant loss of hybrid bermudagrasses [<i>Cynodon dactylon</i> (L.) Pers. × <i>C. transvaalensis</i> Burtt-Davy] in the transition zone. Current research has focused on high-value, low-acreage areas like putting greens, but those practices are impractical to implement on golf course fairways. To that end, multi-year research projects were conducted at three sites across Maryland and Virginia to investigate the influence of annual N fertility [2.0 lb N 1000 ft<sup>−2</sup> (early summer application) or 4.0 lb N 1000 ft<sup>−2</sup> (split applied early and late summer)] across multiple fall mowing heights (0.5 inches, 0.8 inches, or 1 inch) and to elucidate the effects of wetting agent (fall, fall + winter, or none) and irrigation (0.5 inches irrigation at <15% soil volumetric water content [VWC] or none) applications during dormancy on reducing winter injury of hybrid bermudagrass. Dry-down experiments were also conducted using plugs collected from field trials to impose an artificial freeze event and elucidate the effects of soil VWC on winter injury. Turfgrass quality and percent green cover were evaluated regularly as the turfgrass entered dormancy and throughout spring green-up each year. Late-season N applications helped retain fall green coverage without increasing winter injury and increasing fall mowing height did not impact winter injury. Temporary increase in soil VWC increased bermudagrass survival after a short-term freeze event and prevented root biomass loss. These studies demonstrate late-season N applications can help retain green color and increasing soil VWC prior to a short-term freezing event can greatly reduce winter injury.</p>","PeriodicalId":10931,"journal":{"name":"Crop, Forage and Turfgrass Management","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cft2.20303","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop, Forage and Turfgrass Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cft2.20303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Winter injury can cause significant loss of hybrid bermudagrasses [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] in the transition zone. Current research has focused on high-value, low-acreage areas like putting greens, but those practices are impractical to implement on golf course fairways. To that end, multi-year research projects were conducted at three sites across Maryland and Virginia to investigate the influence of annual N fertility [2.0 lb N 1000 ft−2 (early summer application) or 4.0 lb N 1000 ft−2 (split applied early and late summer)] across multiple fall mowing heights (0.5 inches, 0.8 inches, or 1 inch) and to elucidate the effects of wetting agent (fall, fall + winter, or none) and irrigation (0.5 inches irrigation at <15% soil volumetric water content [VWC] or none) applications during dormancy on reducing winter injury of hybrid bermudagrass. Dry-down experiments were also conducted using plugs collected from field trials to impose an artificial freeze event and elucidate the effects of soil VWC on winter injury. Turfgrass quality and percent green cover were evaluated regularly as the turfgrass entered dormancy and throughout spring green-up each year. Late-season N applications helped retain fall green coverage without increasing winter injury and increasing fall mowing height did not impact winter injury. Temporary increase in soil VWC increased bermudagrass survival after a short-term freeze event and prevented root biomass loss. These studies demonstrate late-season N applications can help retain green color and increasing soil VWC prior to a short-term freezing event can greatly reduce winter injury.
期刊介绍:
Crop, Forage & Turfgrass Management is a peer-reviewed, international, electronic journal covering all aspects of applied crop, forage and grazinglands, and turfgrass management. The journal serves the professions related to the management of crops, forages and grazinglands, and turfgrass by publishing research, briefs, reviews, perspectives, and diagnostic and management guides that are beneficial to researchers, practitioners, educators, and industry representatives.