Histone deacetylase SlHDA7 impacts fruit ripening and shelf life in tomato

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2024-08-14 DOI:10.1093/hr/uhae234
Yijie Zhou, Zhiwei Li, Xinguo Su, Huiyu Hou, Yueming Jiang, Xuewu Duan, Hongxia Qu, Guoxiang Jiang
{"title":"Histone deacetylase SlHDA7 impacts fruit ripening and shelf life in tomato","authors":"Yijie Zhou, Zhiwei Li, Xinguo Su, Huiyu Hou, Yueming Jiang, Xuewu Duan, Hongxia Qu, Guoxiang Jiang","doi":"10.1093/hr/uhae234","DOIUrl":null,"url":null,"abstract":"Fruit ripening depends on the accurate control of ripening-related genes expression, with histone deacetylases (HDACs) playing crucial roles in transcriptional regulation. However, the functions of HDACs in fruit maturation remain largely unexplored. Here, we show that SlHDA7 acts as a suppressor of fruit ripening and functions as an H4ac HDAC in tomato. Deletion of SlHDA7 accelerated fruit ripening, while overexpression of SlHDA7 delayed maturation process. Additionally, ethylene production and carotenoid biosynthesis significantly increased in slhda7 mutant fruits but decreased in SlHDA7-overexpressing fruits. Furthermore, SlHDA7 repress the expression of ethylene production and signaling, carotenoid metabolism, cell wall modification, and transcriptional regulation-related genes. RT-qPCR and ChIP-qPCR analyses indicated that SlHDA7 may deacetylate H4ac, leading to reduced transcript levels of ACO1, GGPPS2, Z-ISO, EXP1, and XYL1 mRNA, consequently suppressing fruit ripening. Moreover, SlHDA7 suppresses fruit ripening by targeting specific ripening-associated transcription factors (TFs) like RIN, FUL1, and ERF.E1, ultimately leading to delayed ripening and prolonged fruit shelf life. In summary, our findings indicate that SlHDA7 negatively modulates tomato fruit maturation by adjusting H4ac levels of these ripening-associated genes and key TFs.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"20 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae234","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Fruit ripening depends on the accurate control of ripening-related genes expression, with histone deacetylases (HDACs) playing crucial roles in transcriptional regulation. However, the functions of HDACs in fruit maturation remain largely unexplored. Here, we show that SlHDA7 acts as a suppressor of fruit ripening and functions as an H4ac HDAC in tomato. Deletion of SlHDA7 accelerated fruit ripening, while overexpression of SlHDA7 delayed maturation process. Additionally, ethylene production and carotenoid biosynthesis significantly increased in slhda7 mutant fruits but decreased in SlHDA7-overexpressing fruits. Furthermore, SlHDA7 repress the expression of ethylene production and signaling, carotenoid metabolism, cell wall modification, and transcriptional regulation-related genes. RT-qPCR and ChIP-qPCR analyses indicated that SlHDA7 may deacetylate H4ac, leading to reduced transcript levels of ACO1, GGPPS2, Z-ISO, EXP1, and XYL1 mRNA, consequently suppressing fruit ripening. Moreover, SlHDA7 suppresses fruit ripening by targeting specific ripening-associated transcription factors (TFs) like RIN, FUL1, and ERF.E1, ultimately leading to delayed ripening and prolonged fruit shelf life. In summary, our findings indicate that SlHDA7 negatively modulates tomato fruit maturation by adjusting H4ac levels of these ripening-associated genes and key TFs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组蛋白去乙酰化酶 SlHDA7 对番茄果实成熟和货架期的影响
果实成熟取决于成熟相关基因表达的准确控制,而组蛋白去乙酰化酶(HDACs)在转录调控中起着至关重要的作用。然而,HDACs 在果实成熟过程中的功能在很大程度上仍未得到探索。在这里,我们发现 SlHDA7 是番茄果实成熟的抑制因子,并作为 H4ac HDAC 起作用。缺失 SlHDA7 会加速果实成熟,而过表达 SlHDA7 则会延迟成熟过程。此外,slhda7突变体果实的乙烯产生和类胡萝卜素生物合成显著增加,而SlHDA7过表达果实的乙烯产生和类胡萝卜素生物合成则显著减少。此外,SlHDA7抑制了乙烯生产和信号转导、类胡萝卜素代谢、细胞壁修饰和转录调控相关基因的表达。RT-qPCR 和 ChIP-qPCR 分析表明,SlHDA7 可使 H4ac 去乙酰化,导致 ACO1、GGPPS2、Z-ISO、EXP1 和 XYL1 mRNA 的转录水平降低,从而抑制果实成熟。此外,SlHDA7 通过靶向特定的成熟相关转录因子(TFs),如 RIN、FUL1 和 ERF.E1 等,抑制果实成熟,最终导致果实延迟成熟,延长果实货架期。总之,我们的研究结果表明,SlHDA7 通过调整这些成熟相关基因和关键转录因子的 H4ac 水平,对番茄果实的成熟起着负向调节作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
The SEP homologous gene TEMARY regulates inflorescence phenotypes in H. macrophylla Ancient duplication and functional differentiation of phytochelatin synthases is conserved in plant genomes Nutrient-dependent regulation of symbiotic nitrogen fixation in legumes Characterization of shade-tolerance gene network in soybean revealed by forward integrated reverse genetic studies PIN1a- mediated auxin release from rootstock cotyledon contributes to healing in watermelon as revealed by seeds soaking-VIGS and cotyledon grafting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1