Duo Lv, Haifan Wen, Gang Wang, Juan Liu, Chunli Guo, Jingxian Sun, Keyan Zhang, ChaoHan Li, Jiaqi You, Ming Pan, Huanle He, Run Cai, Junsong Pan
{"title":"CsTs, a C-type lectin receptor-like kinase, regulates the development trichome development and cuticle metabolism in cucumber (Cucumis sativus)","authors":"Duo Lv, Haifan Wen, Gang Wang, Juan Liu, Chunli Guo, Jingxian Sun, Keyan Zhang, ChaoHan Li, Jiaqi You, Ming Pan, Huanle He, Run Cai, Junsong Pan","doi":"10.1093/hr/uhae235","DOIUrl":null,"url":null,"abstract":"Cucumber (Cucumis sativus) fruit spines are a classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. Cucumber (Cucumis sativus) fruit spines are classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. CsTs, a C-type lectin receptor-like kinase gene, reportedly causes a tender trichome phenotype in cucumber when it mutates. In this study, the role of CsTs in cucumber fruit spine morphogenesis was confirmed using gene editing technology. Sectioning technology and cell wall component detection were used to analyze the main causes of tender fruit spines in the ts mutant. Subsequently, transcriptome data and a series of molecular biology experiments were used to further investigate the relationship between CsTs and cytoskeletal homeostasis in cucumber. CsTs overexpression partially compensated for the abnormal trichome phenotype of an Arabidopsis homolog mutant. Genetic hybridization and metabolic analysis indicated that CsTs and CsMcit can affect trichome development and cuticle biosynthesis using the same pathway. Our findings provide important background information for future research on the molecular mechanism underlying cucumber trichome development and contribute to understanding the biological function of C-type lectin receptor-like kinases.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"23 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae235","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Cucumber (Cucumis sativus) fruit spines are a classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. Cucumber (Cucumis sativus) fruit spines are classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. CsTs, a C-type lectin receptor-like kinase gene, reportedly causes a tender trichome phenotype in cucumber when it mutates. In this study, the role of CsTs in cucumber fruit spine morphogenesis was confirmed using gene editing technology. Sectioning technology and cell wall component detection were used to analyze the main causes of tender fruit spines in the ts mutant. Subsequently, transcriptome data and a series of molecular biology experiments were used to further investigate the relationship between CsTs and cytoskeletal homeostasis in cucumber. CsTs overexpression partially compensated for the abnormal trichome phenotype of an Arabidopsis homolog mutant. Genetic hybridization and metabolic analysis indicated that CsTs and CsMcit can affect trichome development and cuticle biosynthesis using the same pathway. Our findings provide important background information for future research on the molecular mechanism underlying cucumber trichome development and contribute to understanding the biological function of C-type lectin receptor-like kinases.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.