Dose–response relationship between computerized cognitive training and cognitive improvement

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-08-15 DOI:10.1038/s41746-024-01210-9
Liyang Liu, Haibo Wang, Yi Xing, Ziheng Zhang, Qingge Zhang, Ming Dong, Zhujiang Ma, Longjun Cai, Xiaoyi Wang, Yi Tang
{"title":"Dose–response relationship between computerized cognitive training and cognitive improvement","authors":"Liyang Liu, Haibo Wang, Yi Xing, Ziheng Zhang, Qingge Zhang, Ming Dong, Zhujiang Ma, Longjun Cai, Xiaoyi Wang, Yi Tang","doi":"10.1038/s41746-024-01210-9","DOIUrl":null,"url":null,"abstract":"Although computerized cognitive training (CCT) is an effective digital intervention for cognitive impairment, its dose-response relationship is understudied. This retrospective cohort study explores the association between training dose and cognitive improvement to find the optimal CCT dose. From 2017 to 2022, 8,709 participants with subjective cognitive decline, mild cognitive impairment, and mild dementia were analyzed. CCT exposure varied in daily dose and frequency, with cognitive improvement measured weekly using Cognitive Index. A mixed-effects model revealed significant Cognitive Index increases across most dose groups before reaching the optimal dose. For participants under 60 years, the optimal dose was 25 to <30 min per day for 6 days a week. For those 60 years or older, it was 50 to <55 min per day for 6 days a week. These findings highlight a dose-dependent effect in CCT, suggesting age-specific optimal dosing for cognitive improvement.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01210-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01210-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Although computerized cognitive training (CCT) is an effective digital intervention for cognitive impairment, its dose-response relationship is understudied. This retrospective cohort study explores the association between training dose and cognitive improvement to find the optimal CCT dose. From 2017 to 2022, 8,709 participants with subjective cognitive decline, mild cognitive impairment, and mild dementia were analyzed. CCT exposure varied in daily dose and frequency, with cognitive improvement measured weekly using Cognitive Index. A mixed-effects model revealed significant Cognitive Index increases across most dose groups before reaching the optimal dose. For participants under 60 years, the optimal dose was 25 to <30 min per day for 6 days a week. For those 60 years or older, it was 50 to <55 min per day for 6 days a week. These findings highlight a dose-dependent effect in CCT, suggesting age-specific optimal dosing for cognitive improvement.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机化认知训练与认知能力提高之间的剂量-反应关系
尽管计算机化认知训练(CCT)是治疗认知障碍的有效数字干预措施,但其剂量-反应关系却未得到充分研究。这项回顾性队列研究探讨了训练剂量与认知改善之间的关系,以找到最佳的CCT剂量。从2017年到2022年,8709名患有主观认知能力下降、轻度认知障碍和轻度痴呆症的参与者接受了分析。CCT暴露的每日剂量和频率各不相同,每周使用认知指数测量认知改善情况。混合效应模型显示,在达到最佳剂量之前,大多数剂量组的认知指数都有显著提高。对于 60 岁以下的参与者,最佳剂量为每天 25 到 30 分钟,每周 6 天。对于 60 岁或以上的参与者,最佳剂量为每天 50 到 55 分钟,每周 6 天。这些发现凸显了 CCT 的剂量依赖效应,表明针对不同年龄的最佳剂量可改善认知能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Automated decision making in Barrett’s oesophagus: development and deployment of a natural language processing tool The adaptation of a single institution diabetes care platform into a nationally available turnkey solution Deep learning based highly accurate transplanted bioengineered corneal equivalent thickness measurement using optical coherence tomography Artificial intelligence applied to coronary artery calcium scans (AI-CAC) significantly improves cardiovascular events prediction Bridging organ transcriptomics for advancing multiple organ toxicity assessment with a generative AI approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1