Margot Aurel Schneider , Larissa Schneider , Haidee Cadd , Zoë A. Thomas , Antonio Martinez-Cortizas , Simon Edward Connor , Georgia L. Stannard , Simon Graeme Haberle
{"title":"Long-term mercury accumulation and climate reconstruction of an Australian alpine lake during the late Quaternary","authors":"Margot Aurel Schneider , Larissa Schneider , Haidee Cadd , Zoë A. Thomas , Antonio Martinez-Cortizas , Simon Edward Connor , Georgia L. Stannard , Simon Graeme Haberle","doi":"10.1016/j.gloplacha.2024.104539","DOIUrl":null,"url":null,"abstract":"<div><p>Mercury (Hg) is a volatile metal of international concern due to its toxicity, with a large atmospheric emission and transport capacity. The biogeochemical cycle of Hg is sensitive to changes in climate, yet our understanding of the specific impact of climatic factors on the Hg cycle remains limited. Here we use a multi-proxy framework, supported by AMS <sup>14</sup>C dating, to interpret climatic events in South-Eastern Australia from ∼18,000 years to 6500 years before present from the sediments of Blue Lake in Australia's alpine region. By combining Hg analysis with Antarctic temperature records and iTRACE climate model outputs, carbon-to‑nitrogen ratios (C:N), macroscopic charcoal, and pollen analysis, we find Hg records within Blue Lake's sediments primarily reflect changes in the catchment as a result of a changing climate. The increase in Hg concentrations began with the onset of the Holocene, following a glacial period during which the region was predominantly rocky, relatively barren, and likely covered by ice and snow. The strong relationship between Hg and organic matter in our record indicates that soil development in the watershed post de-glaciation was a predominant driver of Hg concentration and deposition in Blue Lake. An increase in precipitation and temperature in the Holocene contributed to an increase in nutrients and organic matter, further increasing Hg concentration in Blue Lake. A primary challenge in modern Hg research, particularly in the context of climate change, involves distinguishing changes in Hg levels resulting from human activities from those driven by climatic variations. Our pre-anthropogenic data highlight the long-term interrelationships among climate dynamics, soil processes, and ecological transformations within lake catchments on the geochemical cycle of Hg. These connections should be factored into strategies aimed at mitigating Hg increases in lake sediments resulting from global warming.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"240 ","pages":"Article 104539"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921818124001863/pdfft?md5=c7b01ec37b833760983e811a2f0eda50&pid=1-s2.0-S0921818124001863-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124001863","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mercury (Hg) is a volatile metal of international concern due to its toxicity, with a large atmospheric emission and transport capacity. The biogeochemical cycle of Hg is sensitive to changes in climate, yet our understanding of the specific impact of climatic factors on the Hg cycle remains limited. Here we use a multi-proxy framework, supported by AMS 14C dating, to interpret climatic events in South-Eastern Australia from ∼18,000 years to 6500 years before present from the sediments of Blue Lake in Australia's alpine region. By combining Hg analysis with Antarctic temperature records and iTRACE climate model outputs, carbon-to‑nitrogen ratios (C:N), macroscopic charcoal, and pollen analysis, we find Hg records within Blue Lake's sediments primarily reflect changes in the catchment as a result of a changing climate. The increase in Hg concentrations began with the onset of the Holocene, following a glacial period during which the region was predominantly rocky, relatively barren, and likely covered by ice and snow. The strong relationship between Hg and organic matter in our record indicates that soil development in the watershed post de-glaciation was a predominant driver of Hg concentration and deposition in Blue Lake. An increase in precipitation and temperature in the Holocene contributed to an increase in nutrients and organic matter, further increasing Hg concentration in Blue Lake. A primary challenge in modern Hg research, particularly in the context of climate change, involves distinguishing changes in Hg levels resulting from human activities from those driven by climatic variations. Our pre-anthropogenic data highlight the long-term interrelationships among climate dynamics, soil processes, and ecological transformations within lake catchments on the geochemical cycle of Hg. These connections should be factored into strategies aimed at mitigating Hg increases in lake sediments resulting from global warming.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.