Low-symmetry vacancy-related spin qubit in hexagonal boron nitride

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-08-15 DOI:10.1038/s41524-024-01361-z
Rohit Babar, Gergely Barcza, Anton Pershin, Hyoju Park, Oscar Bulancea Lindvall, Gergő Thiering, Örs Legeza, Jamie H. Warner, Igor A. Abrikosov, Adam Gali, Viktor Ivády
{"title":"Low-symmetry vacancy-related spin qubit in hexagonal boron nitride","authors":"Rohit Babar, Gergely Barcza, Anton Pershin, Hyoju Park, Oscar Bulancea Lindvall, Gergő Thiering, Örs Legeza, Jamie H. Warner, Igor A. Abrikosov, Adam Gali, Viktor Ivády","doi":"10.1038/s41524-024-01361-z","DOIUrl":null,"url":null,"abstract":"<p>Point defect qubits in semiconductors have demonstrated their outstanding capabilities for high spatial resolution sensing generating broad multidisciplinary interest. Hexagonal boron nitride (hBN) hosting point defect qubits have recently opened up new horizons for quantum sensing by implementing sensing foils. The sensitivity of point defect sensors in hBN is currently limited by the linewidth of the magnetic resonance signal, which is broadened due to strong hyperfine couplings. Here, we report on a vacancy-related spin qubit with an inherently low symmetry configuration, the VB2 center, giving rise to a reduced magnetic resonance linewidth at zero magnetic fields. The VB2 center is also equipped with a classical memory that can be utilized for storing population information. Using scanning transmission electron microscopy imaging, we confirm the existence of the VB2 configuration in free-standing monolayer hBN.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"22 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01361-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Point defect qubits in semiconductors have demonstrated their outstanding capabilities for high spatial resolution sensing generating broad multidisciplinary interest. Hexagonal boron nitride (hBN) hosting point defect qubits have recently opened up new horizons for quantum sensing by implementing sensing foils. The sensitivity of point defect sensors in hBN is currently limited by the linewidth of the magnetic resonance signal, which is broadened due to strong hyperfine couplings. Here, we report on a vacancy-related spin qubit with an inherently low symmetry configuration, the VB2 center, giving rise to a reduced magnetic resonance linewidth at zero magnetic fields. The VB2 center is also equipped with a classical memory that can be utilized for storing population information. Using scanning transmission electron microscopy imaging, we confirm the existence of the VB2 configuration in free-standing monolayer hBN.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
六方氮化硼中的低对称性空位相关自旋量子比特
半导体中的点缺陷量子比特在高空间分辨率传感方面表现出了卓越的能力,引起了多学科的广泛兴趣。承载点缺陷量子比特的六方氮化硼(hBN)最近通过实施传感箔,为量子传感开辟了新天地。目前,氮化硼中的点缺陷传感器的灵敏度受到磁共振信号线宽的限制,而强超线性耦合会使线宽变宽。在这里,我们报告了一种与空位相关的自旋量子比特,它具有固有的低对称性构型,即 VB2 中心,从而在零磁场下降低了磁共振线宽。VB2 中心还配备了经典存储器,可用于存储种群信息。通过扫描透射电子显微镜成像,我们证实了独立单层 hBN 中 VB2 构型的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1