Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO3 Nanocomposite Towards Electromagnetic Wave Absorption

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-08-16 DOI:10.1007/s40820-024-01478-2
Ting Wang, Wenxin Zhao, Yukun Miao, Anguo Cui, Chuanhui Gao, Chang Wang, Liying Yuan, Zhongning Tian, Alan Meng, Zhenjiang Li, Meng Zhang
{"title":"Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO3 Nanocomposite Towards Electromagnetic Wave Absorption","authors":"Ting Wang,&nbsp;Wenxin Zhao,&nbsp;Yukun Miao,&nbsp;Anguo Cui,&nbsp;Chuanhui Gao,&nbsp;Chang Wang,&nbsp;Liying Yuan,&nbsp;Zhongning Tian,&nbsp;Alan Meng,&nbsp;Zhenjiang Li,&nbsp;Meng Zhang","doi":"10.1007/s40820-024-01478-2","DOIUrl":null,"url":null,"abstract":"<div><h2> Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>Oxygen-vacancy-rich SiC@MoO<sub>3</sub> nanocomposite with strong reflection loss (− 50.49 dB at 1.27 mm thickness) and broadband absorption band (8.72 GHz at 2.68 mm thickness) were constructed via in situ etching strategy.</p>\n </li>\n <li>\n <p>The presence of oxygen vacancy leads to an increased conductive loss and defect-induced dipole polarization, which plays significant role in attenuating the incident electromagnetic wave.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01478-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • Oxygen-vacancy-rich SiC@MoO3 nanocomposite with strong reflection loss (− 50.49 dB at 1.27 mm thickness) and broadband absorption band (8.72 GHz at 2.68 mm thickness) were constructed via in situ etching strategy.

  • The presence of oxygen vacancy leads to an increased conductive loss and defect-induced dipole polarization, which plays significant role in attenuating the incident electromagnetic wave.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强 SiC@MoO3 纳米复合材料对电磁波吸收的缺陷诱导偶极极化策略
过渡金属氧化物半导体(TMOs)中的缺陷工程正引起人们的极大兴趣,因为它可以通过有意引入缺陷来调节材料的电子结构,从而增强导电性。然而,要全面了解微结构与电磁波吸收能力之间的关系仍然遥不可及,这对过渡金属氧化物吸波材料的发展构成了巨大挑战。目前的研究描述了在碳化硅纳米线上沉积氧化钼层的过程,该过程是通过电沉积后高温煅烧实现的。随后,研究人员有意识地在 MoO3 层中制造氧空位,从而精确调整电磁特性,提高材料的微波吸收性能。值得注意的是,在匹配厚度为 1.27 mm 时,SiC@MO-t4 样品的最小反射损耗为 - 50.49 dB。此外,厚度为 2.81 毫米的 SiC@MO-t6 样品显示出 8.72 千兆赫的有效吸收带宽,全面覆盖了整个 Ku 波段。这些结果不仅凸显了缺陷工程在细微调整电磁特性方面的关键作用,也为应用缺陷工程方法拓宽电磁波吸收频谱提供了宝贵的启示。通过原位刻蚀 SiC@MoO3 纳米复合材料,制备了具有不同氧空位浓度的 SiC@MO-t 样品。氧空位的存在在调整带隙和局部电子分布方面起着至关重要的作用,这反过来又增强了导电性损耗和诱导极化损耗能力。这一发现揭示了一种通过缺陷工程改善电磁波吸收特性的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Wafer-Scale Ag2S-Based Memristive Crossbar Arrays with Ultra-Low Switching-Energies Reaching Biological Synapses Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage Direct Photolithography of WOx Nanoparticles for High-Resolution Non-Emissive Displays Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu2O for Electrochemical CO2 Conversion to Multi-Carbon Products Flexible Strain Sensors with Ultra-High Sensitivity and Wide Range Enabled by Crack-Modulated Electrical Pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1