Novel Antibody-Based Protection/Therapeutics in Staphylococcus aureus.

IF 8.5 1区 生物学 Q1 MICROBIOLOGY Annual review of microbiology Pub Date : 2024-08-15 DOI:10.1146/annurev-micro-041222-024605
Xinhai Chen, Dominique Missiakas
{"title":"Novel Antibody-Based Protection/Therapeutics in <i>Staphylococcus aureus</i>.","authors":"Xinhai Chen, Dominique Missiakas","doi":"10.1146/annurev-micro-041222-024605","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> is a commensal of the skin and nares of humans as well as the causative agent of infections associated with significant mortality. The acquisition of antibiotic resistance traits complicates the treatment of such infections and has prompted the development of monoclonal antibodies. The selection of protective antigens is typically guided by studying the natural antibody responses to a pathogen. What happens when the pathogen masks these antigens and subverts adaptive responses, or when the pathogen inhibits or alters the effector functions of antibodies? <i>S. aureus</i> is constantly exposed to its human host and has evolved all these strategies. Here, we review how anti-<i>S. aureus</i> targets have been selected and how antibodies have been engineered to overcome the formidable immune evasive activities of this pathogen. We discuss the prospects of antibody-based therapeutics in the context of disease severity, immune competence, and history of past infections.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-041222-024605","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Staphylococcus aureus is a commensal of the skin and nares of humans as well as the causative agent of infections associated with significant mortality. The acquisition of antibiotic resistance traits complicates the treatment of such infections and has prompted the development of monoclonal antibodies. The selection of protective antigens is typically guided by studying the natural antibody responses to a pathogen. What happens when the pathogen masks these antigens and subverts adaptive responses, or when the pathogen inhibits or alters the effector functions of antibodies? S. aureus is constantly exposed to its human host and has evolved all these strategies. Here, we review how anti-S. aureus targets have been selected and how antibodies have been engineered to overcome the formidable immune evasive activities of this pathogen. We discuss the prospects of antibody-based therapeutics in the context of disease severity, immune competence, and history of past infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于抗体的金黄色葡萄球菌新型保护/治疗方法。
金黄色葡萄球菌是人类皮肤和鼻腔中的一种寄生菌,也是导致大量死亡的感染病原体。抗生素耐药性的产生使此类感染的治疗变得更加复杂,也促使了单克隆抗体的开发。保护性抗原的选择通常以研究病原体的天然抗体反应为指导。如果病原体掩盖了这些抗原并破坏了适应性反应,或者病原体抑制或改变了抗体的效应功能,会发生什么情况呢?金黄色葡萄球菌不断暴露于人类宿主,并进化出了所有这些策略。在这里,我们回顾了如何选择抗金黄色葡萄球菌的靶点,以及如何设计抗体来克服这种病原体可怕的免疫逃避活动。我们将根据疾病的严重程度、免疫能力和既往感染史讨论抗体疗法的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of microbiology
Annual review of microbiology 生物-微生物学
CiteScore
18.10
自引率
0.00%
发文量
37
期刊介绍: Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).
期刊最新文献
Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Mechanisms Underlying Ophiocordyceps Infection and Behavioral Manipulation of Ants: Unique or Ubiquitous? Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry Dimethylsulfoniopropionate (DMSP): From Biochemistry to Global Ecological Significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1