{"title":"Spinal cord microglia drive sex differences in ethanol-mediated PGE2-induced allodynia","authors":"","doi":"10.1016/j.bbi.2024.08.026","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanisms of how long-term alcohol use can lead to persistent pain pathology are unclear. Understanding how earlier events of short-term alcohol use can lower the threshold of non-painful stimuli, described as allodynia could prove prudent to understand important initiating mechanisms. Previously, we observed that short-term low-dose alcohol intake induced female-specific allodynia and increased microglial activation in the spinal cord dorsal horn. Other literature describes how chronic ethanol exposure activates Toll-like receptor 4 (TLR4) to initiate inflammatory responses. TLR4 is expressed on many cell types, and we aimed to investigate whether TLR4 on microglia is sufficient to potentiate allodynia during a short-term/low-dose alcohol paradigm. Our study used a novel genetic model where TLR4 expression is removed from the entire body by introducing a floxed transcriptional blocker (TLR4-null background (TLR4LoxTB)), then restricted to microglia by breeding TLR4LoxTB animals with Cx3CR1:CreERT2 animals. As previously reported, after 14 days of ethanol administration alone, we observed no increased pain behavior. However, we observed significant priming effects 3 hrs post intraplantar injection of a subthreshold dose of prostaglandin E2 (PGE2) in wild-type and microglia-TLR4 restricted female mice. We also observed a significant female-specific shift to pro-inflammatory phenotype and morphological changes in microglia of the lumbar dorsal horn. Investigations in pain priming-associated neuronal subtypes showed an increase of c-Fos and FosB activity in PKCγ interneurons in the dorsal horn of female mice directly corresponding to increased microglial activity. This study uncovers cell- and female-specific roles of TLR4 in sexual dimorphisms in pain induction among non-pathological drinkers.</p></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S088915912400549X/pdfft?md5=59cb66382c19ea9923e665f24fda3190&pid=1-s2.0-S088915912400549X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088915912400549X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanisms of how long-term alcohol use can lead to persistent pain pathology are unclear. Understanding how earlier events of short-term alcohol use can lower the threshold of non-painful stimuli, described as allodynia could prove prudent to understand important initiating mechanisms. Previously, we observed that short-term low-dose alcohol intake induced female-specific allodynia and increased microglial activation in the spinal cord dorsal horn. Other literature describes how chronic ethanol exposure activates Toll-like receptor 4 (TLR4) to initiate inflammatory responses. TLR4 is expressed on many cell types, and we aimed to investigate whether TLR4 on microglia is sufficient to potentiate allodynia during a short-term/low-dose alcohol paradigm. Our study used a novel genetic model where TLR4 expression is removed from the entire body by introducing a floxed transcriptional blocker (TLR4-null background (TLR4LoxTB)), then restricted to microglia by breeding TLR4LoxTB animals with Cx3CR1:CreERT2 animals. As previously reported, after 14 days of ethanol administration alone, we observed no increased pain behavior. However, we observed significant priming effects 3 hrs post intraplantar injection of a subthreshold dose of prostaglandin E2 (PGE2) in wild-type and microglia-TLR4 restricted female mice. We also observed a significant female-specific shift to pro-inflammatory phenotype and morphological changes in microglia of the lumbar dorsal horn. Investigations in pain priming-associated neuronal subtypes showed an increase of c-Fos and FosB activity in PKCγ interneurons in the dorsal horn of female mice directly corresponding to increased microglial activity. This study uncovers cell- and female-specific roles of TLR4 in sexual dimorphisms in pain induction among non-pathological drinkers.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.