A Single-Cell Analysis of the NK-Cell Landscape Reveals That Dietary Restriction Boosts NK-Cell Antitumor Immunity via Eomesodermin.

IF 8.1 1区 医学 Q1 IMMUNOLOGY Cancer immunology research Pub Date : 2024-11-04 DOI:10.1158/2326-6066.CIR-23-0944
Junming He, Donglin Chen, Wei Xiong, Yuande Wang, Shasha Chen, Meixiang Yang, Zhongjun Dong
{"title":"A Single-Cell Analysis of the NK-Cell Landscape Reveals That Dietary Restriction Boosts NK-Cell Antitumor Immunity via Eomesodermin.","authors":"Junming He, Donglin Chen, Wei Xiong, Yuande Wang, Shasha Chen, Meixiang Yang, Zhongjun Dong","doi":"10.1158/2326-6066.CIR-23-0944","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal metabolism in tumor cells represents a potential target for tumor therapy. In this regard, dietary restriction (DR) or its combination with anticancer drugs is of interest as it can impede the growth of tumor cells. In addition to its effects on tumor cells, DR also plays an extrinsic role in restricting tumor growth by regulating immune cells. NK cells are innate immune cells involved in tumor immunosurveillance. However, it remains uncertain whether DR can assist NK cells in controlling tumor growth. In this study, we demonstrate that DR effectively inhibits metastasis of melanoma cells to the lung. Consistent with this, the regression of tumors induced by DR was minimal in mice lacking NK cells. Single-cell RNA sequencing analysis revealed that DR enriched a rejuvenated subset of CD27+CD11b+ NK cells. Mechanistically, DR activated a regulatory network involving the transcription factor Eomesodermin (Eomes), which is essential for NK-cell development. First, DR promoted the expression of Eomes by optimizing mTORC1 signaling. The upregulation of Eomes revived the subset of functional CD27+CD11b+ NK cells by counteracting the expression of T-bet and downstream Zeb2. Moreover, DR enhanced the function and chemotaxis of NK cells by increasing the accessibility of Eomes to chromatin, leading to elevated expression of adhesion molecules and chemokines. Consequently, we conclude that DR therapy enhances tumor immunity through nontumor autonomous mechanisms, including promoting NK-cell tumor immunosurveillance and activation.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1508-1524"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-23-0944","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormal metabolism in tumor cells represents a potential target for tumor therapy. In this regard, dietary restriction (DR) or its combination with anticancer drugs is of interest as it can impede the growth of tumor cells. In addition to its effects on tumor cells, DR also plays an extrinsic role in restricting tumor growth by regulating immune cells. NK cells are innate immune cells involved in tumor immunosurveillance. However, it remains uncertain whether DR can assist NK cells in controlling tumor growth. In this study, we demonstrate that DR effectively inhibits metastasis of melanoma cells to the lung. Consistent with this, the regression of tumors induced by DR was minimal in mice lacking NK cells. Single-cell RNA sequencing analysis revealed that DR enriched a rejuvenated subset of CD27+CD11b+ NK cells. Mechanistically, DR activated a regulatory network involving the transcription factor Eomesodermin (Eomes), which is essential for NK-cell development. First, DR promoted the expression of Eomes by optimizing mTORC1 signaling. The upregulation of Eomes revived the subset of functional CD27+CD11b+ NK cells by counteracting the expression of T-bet and downstream Zeb2. Moreover, DR enhanced the function and chemotaxis of NK cells by increasing the accessibility of Eomes to chromatin, leading to elevated expression of adhesion molecules and chemokines. Consequently, we conclude that DR therapy enhances tumor immunity through nontumor autonomous mechanisms, including promoting NK-cell tumor immunosurveillance and activation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对 NK 细胞格局的单细胞分析表明,饮食限制可通过 Eomesdermin 增强 NK 细胞的抗肿瘤免疫力。
肿瘤细胞代谢异常是肿瘤治疗的潜在靶点。在这方面,饮食限制(DR)或其与抗癌药物的结合能够阻碍肿瘤细胞的生长,因此备受关注。除了对肿瘤细胞的影响外,DR 还通过调节免疫细胞在限制肿瘤生长方面发挥外在作用。自然杀伤(NK)细胞是参与肿瘤免疫监视的先天性免疫细胞。然而,DR 是否能帮助 NK 细胞控制肿瘤生长仍不确定。在此,我们证明 DR 能有效抑制黑色素瘤细胞向肺部转移。与此相一致的是,在缺乏 NK 细胞的小鼠体内,DR 诱导的肿瘤消退效果甚微。单细胞 RNA 测序分析表明,DR 富集了 CD27+CD11b+ NK 细胞的年轻化亚群。从机理上讲,DR激活了涉及转录因子Eomesodermin(Eomes)的调控网络,而Eomes对NK细胞的发育至关重要。首先,DR通过优化mTORC1信号来促进Eomes的表达。此外,DR通过增加Eomes对染色质的可及性,导致粘附分子和趋化因子的表达增加,从而增强了NK细胞的功能和趋化性。因此,我们得出结论:DR疗法通过非肿瘤自主机制增强肿瘤免疫力,包括促进NK细胞的肿瘤免疫监视和激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
期刊最新文献
CD49a targeting enhances NK cell function and antitumor immunity. A PSMA-targeted Tri-specific Killer Engager enhances NK cell cytotoxicity against prostate cancer. Correction: CD28 Costimulatory Domain-Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function. Targeting of tumoral NAC1 mitigates myeloid-derived suppressor cell-mediated immunosuppression and potentiates anti-PD-1 therapy in ovarian cancer. Inflammatory stress determines the need for chemotherapy in patients with HER2-positive esophagogastric adenocarcinoma receiving targeted and immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1