Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients

IF 4.9 2区 医学 Q1 INFECTIOUS DISEASES International Journal of Antimicrobial Agents Pub Date : 2024-08-13 DOI:10.1016/j.ijantimicag.2024.107305
{"title":"Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients","authors":"","doi":"10.1016/j.ijantimicag.2024.107305","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA).</p></div><div><h3>Methods</h3><p>Precision, accuracy and expected target attainment, considering either initial (B1) or initial and secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre dataset (561 patients, 11 German centres, 3654 TDM-samples).</p></div><div><h3>Results</h3><p>The results demonstrated a slight superiority in predictive performance using MAA in B1, regardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single models: inaccuracy ±3%, ±10%, ±8%; imprecision: &lt;25%, &lt;31%, &lt;28%; expected target attainment &gt;77%, &gt;71%, &gt;73%). The inclusion of a second TDM-sample notably improved precision and target attainment for all MIPD-approaches, particularly within the context of MSA and most of the single models. The expected target attainment is maximized (up to &gt;90%) when the TDM-sample is integrated within 24 h.</p></div><div><h3>Conclusions</h3><p>In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic exposure in critically ill patients, by improving predictive performance with only one sample available for Bayesian forecasting, safety, and usability in clinical practice.</p></div>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924857924002218/pdfft?md5=d215d933dc422ceff04ee5a5d0e95ad5&pid=1-s2.0-S0924857924002218-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924857924002218","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA).

Methods

Precision, accuracy and expected target attainment, considering either initial (B1) or initial and secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre dataset (561 patients, 11 German centres, 3654 TDM-samples).

Results

The results demonstrated a slight superiority in predictive performance using MAA in B1, regardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single models: inaccuracy ±3%, ±10%, ±8%; imprecision: <25%, <31%, <28%; expected target attainment >77%, >71%, >73%). The inclusion of a second TDM-sample notably improved precision and target attainment for all MIPD-approaches, particularly within the context of MSA and most of the single models. The expected target attainment is maximized (up to >90%) when the TDM-sample is integrated within 24 h.

Conclusions

In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic exposure in critically ill patients, by improving predictive performance with only one sample available for Bayesian forecasting, safety, and usability in clinical practice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重症患者哌拉西林精准用药模型的多模型预测性能。
哌拉西林(PIP)/他唑巴坦是一种常用的处方抗生素;然而,剂量过大或过小都可能导致毒性、治疗失败和抗菌药耐药性的产生。对已发表的 24 个 PIP 模型进行的外部评估表明,模型信息精准给药(MIPD)可提高目标实现率。本研究采用各种候选模型,旨在评估不同 MIPD 方法的预测性能,并对 (i) 单一模型方法、(ii) 模型选择算法 (MSA) 和 (iii) 模型平均算法 (MAA) 进行比较。在多中心数据集(561 名患者、11 个德国中心、3654 个 TDM 样本)中评估了每位患者初始 (B1) 或初始和二次 (B2) 治疗药物监测 (TDM) 样本的精确度、准确性和预期目标实现情况。结果表明,与 MSA 和最佳单一模型相比,在 B1 中使用 MAA(无论候选模型如何)的预测性能略胜一筹(MAA、MSA、单一模型:不准确度:±3%、±10%、±8%;不精确度:77%、>71%、>73%)。在所有 MIPD 方法中,特别是在 MSA 和大多数单一模型中,加入第二个 TDM 样本显著提高了精度和目标实现率。当 TDM 样本在 24 小时内整合时,预期目标实现率达到最大(最高超过 90%)。总之,MAA 降低了为特定患者选择不合适模型的风险,从而简化了 MIPD。因此,使用 MAA 对 PIP 进行 MIPD,可进一步优化重症患者的抗生素暴露,在只有一个样本可用于贝叶斯预测的情况下提高预测性能、安全性和临床实践中的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.60
自引率
0.90%
发文量
176
审稿时长
36 days
期刊介绍: The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.
期刊最新文献
Access to phage therapy at Hospices Civils de Lyon in 2022: Implementation of the PHAGEinLYON Clinic program. Title Page & Editorial Board Hypervirulent Carbapenem-Susceptible Klebsiella pneumoniae ST412/K57 with Strong Biofilm Formation: association with gas gangrene and sepsis. Isoniazid Prophylaxis Based on Tuberculosis Risk Factors in Living Kidney Transplantation Recipients: A Retrospective Cohort Study. Machine Learning Accelerates the Discovery of Epitope-based Dual-bioactive Peptides Against Skin Infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1