Romy Moukarzel, E Eirian Jones, Preeti Panda, Justine Larrouy, John V Ramana, Alexis Guerin-Laguette, Hayley J Ridgway
{"title":"Vineyard management systems influence arbuscular mycorrhizal fungi recruitment by grapevine rootstocks in New Zealand.","authors":"Romy Moukarzel, E Eirian Jones, Preeti Panda, Justine Larrouy, John V Ramana, Alexis Guerin-Laguette, Hayley J Ridgway","doi":"10.1093/jambio/lxae211","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Arbuscular mycorrhizal fungi (AMF) can perform significant functions within sustainable agricultural ecosystems, including vineyards. Increased AMF diversity can be beneficial in promoting plant growth and increasing resilience to environmental changes. To effectively utilize AMF communities and their benefits in vineyard ecosystems, a better understanding of how management systems influence AMF community composition is needed. Moreover, it is unknown whether AMF communities in organically managed vineyards are distinct from those in conventionally managed vineyards.</p><p><strong>Methods and results: </strong>In this study, vineyards were surveyed across the Marlborough region, New Zealand to identify the AMF communities colonizing the roots of different rootstocks grafted with Sauvignon Blanc and Pinot Noir in both conventional and organic systems. The AMF communities were identified based on spores isolated from trap cultures established with the collected grapevine roots, and by next-generation sequencing technologies (Illumina MiSeq). The identified AMF species/genera belonged to Glomeraceae, Entrophosporaceae, and Diversisporaceae. The results revealed a significant difference in AMF community composition between rootstocks and in their interaction with management systems.</p><p><strong>Conclusions: </strong>These outcomes indicated that vineyard management systems influence AMF recruitment by rootstocks and some rootstocks may therefore be more suited to organic systems due to the AMF communities they support. This could provide an increased benefit to organic systems by supporting higher biodiversity.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae211","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Arbuscular mycorrhizal fungi (AMF) can perform significant functions within sustainable agricultural ecosystems, including vineyards. Increased AMF diversity can be beneficial in promoting plant growth and increasing resilience to environmental changes. To effectively utilize AMF communities and their benefits in vineyard ecosystems, a better understanding of how management systems influence AMF community composition is needed. Moreover, it is unknown whether AMF communities in organically managed vineyards are distinct from those in conventionally managed vineyards.
Methods and results: In this study, vineyards were surveyed across the Marlborough region, New Zealand to identify the AMF communities colonizing the roots of different rootstocks grafted with Sauvignon Blanc and Pinot Noir in both conventional and organic systems. The AMF communities were identified based on spores isolated from trap cultures established with the collected grapevine roots, and by next-generation sequencing technologies (Illumina MiSeq). The identified AMF species/genera belonged to Glomeraceae, Entrophosporaceae, and Diversisporaceae. The results revealed a significant difference in AMF community composition between rootstocks and in their interaction with management systems.
Conclusions: These outcomes indicated that vineyard management systems influence AMF recruitment by rootstocks and some rootstocks may therefore be more suited to organic systems due to the AMF communities they support. This could provide an increased benefit to organic systems by supporting higher biodiversity.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.