Dahea Lee, Dongsu Kim, Donggeon Kim, Jisu Kang, Kiram Lee, Hyunji Lee, Yujin Yoon, Youngin Lee, Nahmju Kim, Byoung Chul Cho, Jihoon Chang, Byoung Chul Lee
{"title":"Harnessing the Potential of FAP-IL-12mut TMEkine™ for Targeted and Enhanced Anti-tumor Responses.","authors":"Dahea Lee, Dongsu Kim, Donggeon Kim, Jisu Kang, Kiram Lee, Hyunji Lee, Yujin Yoon, Youngin Lee, Nahmju Kim, Byoung Chul Cho, Jihoon Chang, Byoung Chul Lee","doi":"10.1158/1535-7163.MCT-24-0125","DOIUrl":null,"url":null,"abstract":"<p><p>While cancer immunotherapy has yielded encouraging outcomes in hematological malignancies, it has faced challenges in achieving the same level of effectiveness in numerous solid tumors, primarily because of the presence of immune-suppressive tumor microenvironments (TMEs). The immunosuppressive qualities of the TME have generated considerable interest, making it a focal point for treatments aimed at enhancing immune responses and inhibiting tumor progression. Fibroblast activation protein (FAP), an attractive candidate for targeted immunotherapy, is prominently expressed in the TME of various solid tumors. Interleukin-12 (IL-12), recognized as a key mediator of immune responses, has been explored as a potential candidate for cancer treatment. Nevertheless, initial efforts to administer IL-12 systemically demonstrated limited efficacy and notable side effects, emphasizing the necessity for innovation. To address these concerns, our molecules incorporated specific IL-12 mutations, called IL-12mut, which reduced toxicity. This study explored the therapeutic potential of the FAP-IL-12mut TMEkine™-a novel immunotherapeutic agent selectively engineered to target FAP-expressing cells in preclinical cancer models. Our preclinical results, conducted across diverse murine cancer models, demonstrated that FAP-IL-12mut significantly inhibits tumor growth, enhances immune cell infiltration, and promotes a shift toward a cytotoxic immune activation profile. These findings suggest that FAP-IL-12mut could offer effective cancer treatment strategies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0125","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While cancer immunotherapy has yielded encouraging outcomes in hematological malignancies, it has faced challenges in achieving the same level of effectiveness in numerous solid tumors, primarily because of the presence of immune-suppressive tumor microenvironments (TMEs). The immunosuppressive qualities of the TME have generated considerable interest, making it a focal point for treatments aimed at enhancing immune responses and inhibiting tumor progression. Fibroblast activation protein (FAP), an attractive candidate for targeted immunotherapy, is prominently expressed in the TME of various solid tumors. Interleukin-12 (IL-12), recognized as a key mediator of immune responses, has been explored as a potential candidate for cancer treatment. Nevertheless, initial efforts to administer IL-12 systemically demonstrated limited efficacy and notable side effects, emphasizing the necessity for innovation. To address these concerns, our molecules incorporated specific IL-12 mutations, called IL-12mut, which reduced toxicity. This study explored the therapeutic potential of the FAP-IL-12mut TMEkine™-a novel immunotherapeutic agent selectively engineered to target FAP-expressing cells in preclinical cancer models. Our preclinical results, conducted across diverse murine cancer models, demonstrated that FAP-IL-12mut significantly inhibits tumor growth, enhances immune cell infiltration, and promotes a shift toward a cytotoxic immune activation profile. These findings suggest that FAP-IL-12mut could offer effective cancer treatment strategies.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.