首页 > 最新文献

Molecular Cancer Therapeutics最新文献

英文 中文
A novel designed anti-PD-L1/OX40 bispecific antibody augments both peripheral and tumor-associated immune responses for boosting anti-tumor immunity. 一种新设计的抗PD-L1/OX40双特异性抗体可增强外周和肿瘤相关免疫反应,从而提高抗肿瘤免疫力。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-22 DOI: 10.1158/1535-7163.MCT-24-0330
Baocun Li, Shiyong Gong, Nianying Zhang, Beilei Shi, Zhou Lv, Yu Zhang, Naren Gaowa, Liqin Dong, Danqing Wu, Jianfu Wu, Fan Liu, Rui Zhang, Ramin Behzadigohar, Vinod Ganju, Chengbin Wu, Xuan Wu

Bispecific antibodies (BsAbs) combining simultaneous PD-L1 blockade and conditional co-stimulatory receptor activation have been developed to improve immune checkpoint therapy response. However, several PD-L1-based BsAbs have encountered clinical challenges, including insufficient activity or unexpected toxicity. In this study, we propose OX40 as a more suitable target partner for PD-L1-based BsAb design compared to ongoing clinical partners (CD27 and 4-1BB). We present a novel Fc-silenced tetravalent PD-L1/OX40 BsAb (EMB-09), which efficiently blocks PD-1/PD-L1 interactions and induces PD-L1-dependent OX40 activation, leading to enhanced T cell activation. EMB-09 demonstrated improved anti-tumor activity compared to the anti-PD-L1 monoclonal antibody. Significantly, EMB-09 activated effector memory T cells in peripheral immune system, promoted the influx of stem-like CD8+ T cells into the tumor site, resulting in a more active phenotype of CD8+ tumor-infiltrating lymphocytes. In an ongoing first-in-human study in patients with advanced refractory solid tumors (NCT05263180), EMB-09 demonstrated a consistent pharmacodynamic response and early efficacy signals.

为了改善免疫检查点疗法的反应,人们开发了同时阻断 PD-L1 和有条件激活共刺激受体的双特异性抗体(BsAbs)。然而,几种基于 PD-L1 的 BsAbs 都遇到了临床挑战,包括活性不足或意外毒性。在本研究中,我们提出,与现有的临床伙伴(CD27 和 4-1BB)相比,OX40 是更适合设计基于 PD-L1 的 BsAb 的目标伙伴。我们提出了一种新型 Fc 稀释四价 PD-L1/OX40 BsAb(EMB-09),它能有效阻断 PD-1/PD-L1 相互作用,诱导 PD-L1 依赖性 OX40 激活,从而增强 T 细胞激活。与抗PD-L1单克隆抗体相比,EMB-09的抗肿瘤活性有所提高。值得注意的是,EMB-09 能激活外周免疫系统中的效应记忆 T 细胞,促进干型 CD8+ T 细胞涌入肿瘤部位,使 CD8+ 肿瘤浸润淋巴细胞的表型更加活跃。在一项针对晚期难治性实体瘤患者的首次人体研究(NCT05263180)中,EMB-09 显示出一致的药效学反应和早期疗效信号。
{"title":"A novel designed anti-PD-L1/OX40 bispecific antibody augments both peripheral and tumor-associated immune responses for boosting anti-tumor immunity.","authors":"Baocun Li, Shiyong Gong, Nianying Zhang, Beilei Shi, Zhou Lv, Yu Zhang, Naren Gaowa, Liqin Dong, Danqing Wu, Jianfu Wu, Fan Liu, Rui Zhang, Ramin Behzadigohar, Vinod Ganju, Chengbin Wu, Xuan Wu","doi":"10.1158/1535-7163.MCT-24-0330","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0330","url":null,"abstract":"<p><p>Bispecific antibodies (BsAbs) combining simultaneous PD-L1 blockade and conditional co-stimulatory receptor activation have been developed to improve immune checkpoint therapy response. However, several PD-L1-based BsAbs have encountered clinical challenges, including insufficient activity or unexpected toxicity. In this study, we propose OX40 as a more suitable target partner for PD-L1-based BsAb design compared to ongoing clinical partners (CD27 and 4-1BB). We present a novel Fc-silenced tetravalent PD-L1/OX40 BsAb (EMB-09), which efficiently blocks PD-1/PD-L1 interactions and induces PD-L1-dependent OX40 activation, leading to enhanced T cell activation. EMB-09 demonstrated improved anti-tumor activity compared to the anti-PD-L1 monoclonal antibody. Significantly, EMB-09 activated effector memory T cells in peripheral immune system, promoted the influx of stem-like CD8+ T cells into the tumor site, resulting in a more active phenotype of CD8+ tumor-infiltrating lymphocytes. In an ongoing first-in-human study in patients with advanced refractory solid tumors (NCT05263180), EMB-09 demonstrated a consistent pharmacodynamic response and early efficacy signals.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pancreatic CAF-derived Autotaxin (ATX) drives autocrine CTGF expression to modulate pro-tumorigenic signaling. 胰腺 CAF 衍生的 Autotaxin (ATX) 可驱动 CTGF 的自分泌表达,从而调节促肿瘤发生信号。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-21 DOI: 10.1158/1535-7163.MCT-23-0522
Fanny Volat, Ragini Medhi, Lauren Z Maggs, Marcel A Deken, Alice Price, Lauren Andrews, Jonathan Clark, Diane Taylor, Alan Carruthers, Ewan Taylor-Smith, Natalia Pacheco, Simon A Rudge, Amy Fraser, Andrea F Lopez-Clavijo, Bebiana C Sousa, Zoë Johnson, Giusy Di Conza, Lars van der Veen, Pritom Shah, Hilary Sandig, Hayley J Sharpe, Stuart Farrow

Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling. Using the clinical-stage ATX inhibitor, IOA-289, we identified connective tissue growth factor (CTGF) as a downstream mediator of ATX signaling in the PDAC CAF-derived cell line, 0082T. Genetic ablation or pharmacological inhibition of ATX in 0082T CAFs reduced CTGF secretion via modulation of LPA/LPA receptor (LPAR) signaling. Despite the loss of ATX function, extracellular levels of LPA were paradoxically increased, indicating a role for ATX beyond its enzymatic activity and suggesting a role for its LPA chaperone function in the LPA/LPAR signaling in CAFs. As CAFs are the main source for CTGF in the PDAC TME, these findings suggest a role for ATX in promoting pro-tumorigenic microenvironment via modulation of CAF secretion, not only via its LPA-producing activity but also via its LPA chaperone function, providing a potential mechanism for the anti-tumor effects of ATX inhibition.

由ENPP2编码的Autotaxin(ATX)是胰腺导管腺癌(PDAC)的临床靶点。ATX催化溶血磷脂酸(LPA)的产生,LPA是肿瘤微环境(TME)中的一个重要调节因子,但ATX/LPA轴在PDAC中的促肿瘤作用仍不清楚。在这里,我们通过对患者样本和细胞系数据集的研究表明,PDAC TME 而不是癌细胞是大部分 ENPP2 表达的原因,并强调了癌症相关成纤维细胞(CAF)产生的 ATX 在自分泌和旁分泌致癌信号转导中的关键作用。利用临床阶段的 ATX 抑制剂 IOA-289,我们发现结缔组织生长因子(CTGF)是 PDAC CAF 衍生细胞系 0082T 中 ATX 信号的下游介质。通过调节LPA/LPA受体(LPAR)信号转导,基因消减或药物抑制ATX可减少0082T CAF中CTGF的分泌。尽管 ATX 功能丧失,但细胞外的 LPA 水平却增加了,这表明 ATX 的作用超出了它的酶活性,也表明它在 CAFs 的 LPA/LPAR 信号转导中发挥着 LPA 伴侣功能。由于CAFs是PDAC TME中CTGF的主要来源,这些研究结果表明ATX在通过调节CAF分泌促进促肿瘤微环境中的作用,不仅通过其产生LPA的活性,还通过其LPA伴侣功能,为抑制ATX的抗肿瘤作用提供了潜在机制。
{"title":"Pancreatic CAF-derived Autotaxin (ATX) drives autocrine CTGF expression to modulate pro-tumorigenic signaling.","authors":"Fanny Volat, Ragini Medhi, Lauren Z Maggs, Marcel A Deken, Alice Price, Lauren Andrews, Jonathan Clark, Diane Taylor, Alan Carruthers, Ewan Taylor-Smith, Natalia Pacheco, Simon A Rudge, Amy Fraser, Andrea F Lopez-Clavijo, Bebiana C Sousa, Zoë Johnson, Giusy Di Conza, Lars van der Veen, Pritom Shah, Hilary Sandig, Hayley J Sharpe, Stuart Farrow","doi":"10.1158/1535-7163.MCT-23-0522","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0522","url":null,"abstract":"<p><p>Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling. Using the clinical-stage ATX inhibitor, IOA-289, we identified connective tissue growth factor (CTGF) as a downstream mediator of ATX signaling in the PDAC CAF-derived cell line, 0082T. Genetic ablation or pharmacological inhibition of ATX in 0082T CAFs reduced CTGF secretion via modulation of LPA/LPA receptor (LPAR) signaling. Despite the loss of ATX function, extracellular levels of LPA were paradoxically increased, indicating a role for ATX beyond its enzymatic activity and suggesting a role for its LPA chaperone function in the LPA/LPAR signaling in CAFs. As CAFs are the main source for CTGF in the PDAC TME, these findings suggest a role for ATX in promoting pro-tumorigenic microenvironment via modulation of CAF secretion, not only via its LPA-producing activity but also via its LPA chaperone function, providing a potential mechanism for the anti-tumor effects of ATX inhibition.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Amanitin-based Antibody Drug Conjugates (ATAC®) targeting TROP2 for the treatment of Pancreatic Cancer. 用于治疗胰腺癌的靶向 TROP2 的新型鹅膏蕈素类抗体药物结合物 (ATAC®)。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-20 DOI: 10.1158/1535-7163.MCT-24-0266
Eleni Papacharisi, Alexandra Braun, Marija Vranic, Andreas M Pahl, Torsten Hechler

Trophoblast cell surface antigen 2 (TROP2) exhibits aberrant expression in pancreatic cancer, correlating with metastasis, advanced tumor stage and poor prognosis of pancreatic ductal adenocarcinoma (PDAC) patients. TROP2 has been recognized as a promising therapeutic target for antibody drug conjugates (ADCs), as evidenced by the approval of the anti-TROP2 ADC Trodelvy® for the treatment of triple negative breast cancer. In this study we report the generation of novel second-generation amanitin based ADCs (ATAC®s) targeting TROP2, comprising the humanized RS7 antibody of Trodelvy® (hRS7) and the highly potent payload amanitin. The specific in vitro binding, efficient antigen internalization, and high cytotoxicity of hRS7 ATAC®s with half maximal effective concentration (EC50) values in the picomolar range in TROP2-expressing cells constituted the foundation for preclinical in vivo evaluation. The hRS7 ATAC®s demonstrated a significant reduction in tumor growth in vivo in subcutaneous xenograft mouse models of pancreatic cancer and triple negative breast cancer at well-tolerated doses. The antitumor efficacy correlated with the level of TROP2 expression on the tumors and the in vivo tumor uptake of the ATAC®s. The long half-life of 9.7-10.7 days of hRS7 ATAC®s without premature payload release in serum supported a high therapeutic index. Notably, the efficacy of the hRS7 ATAC®s was superior to that of Trodelvy® with complete tumor eradication in both, refractory pancreatic and triple negative breast cancer xenograft models. In summary, hRS7 ATAC®s represent a highly effective and well-tolerated targeted therapy, and our data support their development for pancreatic cancer and other TROP2-expressing tumors.

滋养层细胞表面抗原 2(TROP2)在胰腺癌中异常表达,与胰腺导管腺癌(PDAC)患者的转移、肿瘤晚期和预后不良有关。抗 TROP2 ADC Trodelvy® 已被批准用于治疗三阴性乳腺癌,由此可见,TROP2 已被认为是抗体药物共轭物(ADC)的一个有前景的治疗靶点。在本研究中,我们报告了以TROP2为靶点的新型第二代基于amanitin的ADC(ATAC®s)的生成情况,该ADC由Trodelvy®的人源化RS7抗体(hRS7)和高效力有效载荷amanitin组成。hRS7 ATAC®s 具有特异性体外结合、高效抗原内化和高细胞毒性,在表达 TROP2 的细胞中的半数最大有效浓度(EC50)值在皮摩尔范围内,这为临床前体内评估奠定了基础。在胰腺癌和三阴性乳腺癌皮下异种移植小鼠模型中,hRS7 ATAC®s 以良好的耐受剂量显著降低了体内肿瘤的生长。抗肿瘤效果与肿瘤上 TROP2 的表达水平和 ATAC®s 在体内的肿瘤吸收率相关。hRS7 ATAC®s 的半衰期长达 9.7-10.7 天,不会在血清中过早释放有效载荷,因此具有很高的治疗指数。值得注意的是,在难治性胰腺癌和三阴性乳腺癌异种移植模型中,hRS7 ATAC®s 的疗效优于 Trodelvy®,能完全根除肿瘤。总之,hRS7 ATAC®s 是一种高效且耐受性良好的靶向疗法,我们的数据支持将其用于胰腺癌和其他表达 TROP2 的肿瘤。
{"title":"Novel Amanitin-based Antibody Drug Conjugates (ATAC®) targeting TROP2 for the treatment of Pancreatic Cancer.","authors":"Eleni Papacharisi, Alexandra Braun, Marija Vranic, Andreas M Pahl, Torsten Hechler","doi":"10.1158/1535-7163.MCT-24-0266","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0266","url":null,"abstract":"<p><p>Trophoblast cell surface antigen 2 (TROP2) exhibits aberrant expression in pancreatic cancer, correlating with metastasis, advanced tumor stage and poor prognosis of pancreatic ductal adenocarcinoma (PDAC) patients. TROP2 has been recognized as a promising therapeutic target for antibody drug conjugates (ADCs), as evidenced by the approval of the anti-TROP2 ADC Trodelvy® for the treatment of triple negative breast cancer. In this study we report the generation of novel second-generation amanitin based ADCs (ATAC®s) targeting TROP2, comprising the humanized RS7 antibody of Trodelvy® (hRS7) and the highly potent payload amanitin. The specific in vitro binding, efficient antigen internalization, and high cytotoxicity of hRS7 ATAC®s with half maximal effective concentration (EC50) values in the picomolar range in TROP2-expressing cells constituted the foundation for preclinical in vivo evaluation. The hRS7 ATAC®s demonstrated a significant reduction in tumor growth in vivo in subcutaneous xenograft mouse models of pancreatic cancer and triple negative breast cancer at well-tolerated doses. The antitumor efficacy correlated with the level of TROP2 expression on the tumors and the in vivo tumor uptake of the ATAC®s. The long half-life of 9.7-10.7 days of hRS7 ATAC®s without premature payload release in serum supported a high therapeutic index. Notably, the efficacy of the hRS7 ATAC®s was superior to that of Trodelvy® with complete tumor eradication in both, refractory pancreatic and triple negative breast cancer xenograft models. In summary, hRS7 ATAC®s represent a highly effective and well-tolerated targeted therapy, and our data support their development for pancreatic cancer and other TROP2-expressing tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of a CCL21-gene modified dendritic cell vaccine utilized for a clinical trial in non-small cell lung cancer. 用于非小细胞肺癌临床试验的 CCL21 基因修饰树突状细胞疫苗的特点。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-19 DOI: 10.1158/1535-7163.MCT-24-0435
Michael S Oh, Camelia Dumitras, Ramin Salehi-Rad, Linh M Tran, Kostyantyn Krysan, Raymond J Lim, Zhe Jing, Shahed Tappuni, Aaron Lisberg, Edward B Garon, Steven M Dubinett, Bin Liu

The treatment of non-small cell lung cancer has made major strides with the use of immune checkpoint inhibitors, but there remains a significant need for therapies that can overcome immunotherapy resistance. Dendritic cell (DC) vaccines have been proposed as a therapy that can potentially enhance the antitumor immune response. We have embarked on a phase I clinical trial of a vaccine consisting of monocyte-derived DCs (moDCs) modified to express the chemokine CCL21 (CCL21-DC) given in combination with pembrolizumab. Here, we report a comprehensive characterization of this CCL21-DC vaccine and interrogate the effects of multiple factors in the manufacturing process. We show that the cellular makeup of the CCL21-DC vaccine is heterogeneous due to the presence of passenger lymphocytes at a proportion that is highly variable among patients. Single cell RNA sequencing of vaccines revealed further heterogeneity within the moDC compartment, with cells spanning a spectrum of DC phenotypes. Transduction with a CCL21-containing adenoviral vector augmented CCL21 secretion by moDCs but otherwise had a minimal effect on vaccine characteristics. A single freeze-thaw cycle for stored vaccines was associated with minor alterations to the DC phenotype, as was the use of healthy donors rather than patient autologous blood. Our results highlight important considerations for the production of DC vaccines and identify underexplored factors that may affect their efficacy and immunologic impact.

随着免疫检查点抑制剂的使用,非小细胞肺癌的治疗取得了重大进展,但人们仍然非常需要能够克服免疫疗法耐药性的疗法。树突状细胞(DC)疫苗被认为是一种有可能增强抗肿瘤免疫反应的疗法。我们已经开始了由表达趋化因子CCL21(CCL21-DC)的单核细胞衍生DC(moDCs)组成的疫苗与pembrolizumab联合用药的I期临床试验。在此,我们报告了这种 CCL21-DC 疫苗的全面特征,并探讨了生产过程中多种因素的影响。我们发现,CCL21-DC 疫苗的细胞构成是异质的,这是因为客体淋巴细胞的存在比例在患者之间存在很大差异。疫苗的单细胞 RNA 测序揭示了 moDC 区间的进一步异质性,细胞跨越了 DC 表型的光谱。用含 CCL21 的腺病毒载体转导可增强 moDC 的 CCL21 分泌,但对疫苗特性的影响微乎其微。储存疫苗的单次冻融循环与 DC 表型的轻微改变有关,使用健康供血者而非患者自体血也是如此。我们的研究结果强调了生产 DC 疫苗的重要注意事项,并发现了可能影响疫苗疗效和免疫学影响的未被充分探索的因素。
{"title":"Characteristics of a CCL21-gene modified dendritic cell vaccine utilized for a clinical trial in non-small cell lung cancer.","authors":"Michael S Oh, Camelia Dumitras, Ramin Salehi-Rad, Linh M Tran, Kostyantyn Krysan, Raymond J Lim, Zhe Jing, Shahed Tappuni, Aaron Lisberg, Edward B Garon, Steven M Dubinett, Bin Liu","doi":"10.1158/1535-7163.MCT-24-0435","DOIUrl":"10.1158/1535-7163.MCT-24-0435","url":null,"abstract":"<p><p>The treatment of non-small cell lung cancer has made major strides with the use of immune checkpoint inhibitors, but there remains a significant need for therapies that can overcome immunotherapy resistance. Dendritic cell (DC) vaccines have been proposed as a therapy that can potentially enhance the antitumor immune response. We have embarked on a phase I clinical trial of a vaccine consisting of monocyte-derived DCs (moDCs) modified to express the chemokine CCL21 (CCL21-DC) given in combination with pembrolizumab. Here, we report a comprehensive characterization of this CCL21-DC vaccine and interrogate the effects of multiple factors in the manufacturing process. We show that the cellular makeup of the CCL21-DC vaccine is heterogeneous due to the presence of passenger lymphocytes at a proportion that is highly variable among patients. Single cell RNA sequencing of vaccines revealed further heterogeneity within the moDC compartment, with cells spanning a spectrum of DC phenotypes. Transduction with a CCL21-containing adenoviral vector augmented CCL21 secretion by moDCs but otherwise had a minimal effect on vaccine characteristics. A single freeze-thaw cycle for stored vaccines was associated with minor alterations to the DC phenotype, as was the use of healthy donors rather than patient autologous blood. Our results highlight important considerations for the production of DC vaccines and identify underexplored factors that may affect their efficacy and immunologic impact.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the acute mucosal toxicity to fractionated radiotherapy combined with the ATM inhibitor WSD0628. 建立分次放疗联合 ATM 抑制剂 WSD0628 的急性粘膜毒性模型。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-19 DOI: 10.1158/1535-7163.MCT-24-0664
Darwin A Garcia, Sneha Rathi, Margaret A Connors, Michael Grams, Rachael A Vaubel, Katrina K Bakken, Lauren L Ott, Brett L Carlson, Zeng Hu, Paul A Decker, Jeanette E Eckel-Passow, Danielle M Burgenske, Wei Zhong, Joshua D Trzasko, Michael G Herman, William F Elmquist, Nicholas B Remmes, Jann N Sarkaria

ATM inhibitors are being developed as radiosensitizers to improve the antitumor effects of radiotherapy, but ATM inhibition can also radiosensitize normal tissues. Therefore, understanding the elevated risk for normal tissue toxicities is critical for radiosensitizer development. This study focused on modeling the relationship between acute mucosal toxicity, radiation dose, fractionation schedule, and radiosensitizer exposure. The ATM inhibitor WSD0628 was combined with single or fractionated doses of radiation delivered to the oral cavity or esophagus of FVB mice. The potentiation by WSD0628 was quantified by a sensitizer enhancement ratio (SER), which describes the changes in radiation tolerance for radiation combined with WSD0628 relative to radiation-only regimens. WSD0628 profoundly enhanced radiation-induced acute oral and esophageal toxicities. For oral mucosal toxicity, the enhancement by WSD0628 with 3 fractions of radiation resulted in an SER ranging from 1.3 (0.25 mg/kg) to 3.1 (7.5 mg/kg). For the 7.5 mg/kg combination, the SER increased with increasing number of fractions from 2.2 (1 fraction) to 4.3 (7 fractions) for oral toxicity and from 2.2 (1 fraction) to 3.6 (3 fractions) for esophageal toxicity, which reflects a loss of the normal tissue sparing benefit of fractionated radiation. These findings were used to develop a modified biologically effective dose model to determine alternative radiation schedules with or without WSD0628 that result in similar levels of toxicity. Successful radiosensitizer dose-escalation to maximally effective therapeutic dose will require careful deliberation of tumor site and reduction of radiation dose-volume limits for organs at risk.

目前正在开发ATM抑制剂作为放射增敏剂,以提高放疗的抗肿瘤效果,但ATM抑制剂也会使正常组织放射增敏。因此,了解正常组织毒性升高的风险对于放射增敏剂的开发至关重要。本研究的重点是模拟急性粘膜毒性、放射剂量、分次计划和放射增敏剂照射之间的关系。将 ATM 抑制剂 WSD0628 与单次或分次剂量的辐射结合起来,照射 FVB 小鼠的口腔或食道。WSD0628的增效作用通过增敏剂增强比(SER)进行量化,该比率描述了相对于纯放射治疗方案而言,结合WSD0628的放射治疗方案的辐射耐受性的变化。WSD0628 显著增强了辐射引起的急性口腔和食道毒性。在口腔黏膜毒性方面,WSD0628 与 3 次分量辐射的增强作用导致了 1.3(0.25 毫克/千克)到 3.1(7.5 毫克/千克)的 SER。对于 7.5 毫克/千克的组合,口腔毒性的 SER 随着分段数的增加而增加,从 2.2(1 分段)到 4.3(7 分段),食管毒性的 SER 从 2.2(1 分段)到 3.6(3 分段),这反映了分段放射对正常组织的保护作用的丧失。这些研究结果被用来开发一个改进的生物有效剂量模型,以确定使用或不使用 WSD0628 会导致相似毒性水平的其他辐射计划。要成功地将放射增敏剂的剂量递增到最大有效治疗剂量,就必须仔细考虑肿瘤部位,并降低有风险器官的辐射剂量-体积限制。
{"title":"Modeling the acute mucosal toxicity to fractionated radiotherapy combined with the ATM inhibitor WSD0628.","authors":"Darwin A Garcia, Sneha Rathi, Margaret A Connors, Michael Grams, Rachael A Vaubel, Katrina K Bakken, Lauren L Ott, Brett L Carlson, Zeng Hu, Paul A Decker, Jeanette E Eckel-Passow, Danielle M Burgenske, Wei Zhong, Joshua D Trzasko, Michael G Herman, William F Elmquist, Nicholas B Remmes, Jann N Sarkaria","doi":"10.1158/1535-7163.MCT-24-0664","DOIUrl":"10.1158/1535-7163.MCT-24-0664","url":null,"abstract":"<p><p>ATM inhibitors are being developed as radiosensitizers to improve the antitumor effects of radiotherapy, but ATM inhibition can also radiosensitize normal tissues. Therefore, understanding the elevated risk for normal tissue toxicities is critical for radiosensitizer development. This study focused on modeling the relationship between acute mucosal toxicity, radiation dose, fractionation schedule, and radiosensitizer exposure. The ATM inhibitor WSD0628 was combined with single or fractionated doses of radiation delivered to the oral cavity or esophagus of FVB mice. The potentiation by WSD0628 was quantified by a sensitizer enhancement ratio (SER), which describes the changes in radiation tolerance for radiation combined with WSD0628 relative to radiation-only regimens. WSD0628 profoundly enhanced radiation-induced acute oral and esophageal toxicities. For oral mucosal toxicity, the enhancement by WSD0628 with 3 fractions of radiation resulted in an SER ranging from 1.3 (0.25 mg/kg) to 3.1 (7.5 mg/kg). For the 7.5 mg/kg combination, the SER increased with increasing number of fractions from 2.2 (1 fraction) to 4.3 (7 fractions) for oral toxicity and from 2.2 (1 fraction) to 3.6 (3 fractions) for esophageal toxicity, which reflects a loss of the normal tissue sparing benefit of fractionated radiation. These findings were used to develop a modified biologically effective dose model to determine alternative radiation schedules with or without WSD0628 that result in similar levels of toxicity. Successful radiosensitizer dose-escalation to maximally effective therapeutic dose will require careful deliberation of tumor site and reduction of radiation dose-volume limits for organs at risk.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HPV and p53 status as precision determinants of head and neck cancer response to DNA-PKcs inhibition in combination with irradiation. 人乳头瘤病毒(HPV)和 p53 状态是头颈癌对 DNA-PKcs 抑制剂联合照射反应的精确决定因素。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-08 DOI: 10.1158/1535-7163.MCT-23-0794
Liana Hayrapetyan, Selina Moara Roth, Aurélie Quintin, Lusine Hovhannisyan, Matúš Medo, Rahel Riedo, Julien G Ott, Joachim Albers, Daniel M Aebersold, Yitzhak Zimmer, Michaela Medová

Major risk factors of head and neck squamous cell carcinoma (HNSCC) are tobacco use and human papillomavirus (HPV). HPV E6 oncoprotein leads to p53 degradation, whereas HPV-negative cancers are frequently associated with TP53 mutations. Peposertib is a potent and selective, orally administered small-molecule inhibitor of the catalytic subunit of the DNA-dependent kinase (DNA-PKcs), a key regulator of non-homologous end joining (NHEJ). NHEJ inhibition along with irradiation (IR)-induced DNA double-strand breaks has the potential to increase antitumor treatment efficacy. Here, we investigated the responses of a panel of HNSCC models with distinct HPV and p53 status to treatments with IR, DNA-PKcs inhibition, and their combination in-vitro and in-vivo. IR-induced DNA damage combined with peposertib administration shortly before IR results in decreased cell viability and proliferation and causes DNA repair delay in all studied HNSCC cell lines. However, our data confirm that the actual cell fate upon this treatment is determined by cellular p53 and/or HPV status. Cells lacking functional p53 due to its degradation by HPV or due to a loss-of-function mutation are arrested in the G2/M phase of the cell cycle and eliminated by apoptosis whereas p53-proficient HNSCC cell lines preferentially undergo senescence. This is also recapitulated in-vivo, where HPV+ UD-SCC-2 xenografts display stronger and more durable responses to the combined treatment as compared to p53 wild-type UM-SCC-74A tumors. In conclusion, DNA-PKcs inhibitor peposertib should be further studied as a potential radiosensitizer for HNSCCs, taking into consideration the genetic background and the HPV status of a particular tumor.

头颈部鳞状细胞癌(HNSCC)的主要风险因素是吸烟和人类乳头瘤病毒(HPV)。HPV E6 肿瘤蛋白会导致 p53 降解,而 HPV 阴性的癌症则经常与 TP53 突变有关。Peposertib 是一种强效的选择性口服小分子抑制剂,能抑制 DNA 依赖性激酶(DNA-PKcs)的催化亚基,而 DNA 依赖性激酶是非同源末端连接(NHEJ)的关键调节因子。抑制 NHEJ 和辐照(IR)诱导的 DNA 双链断裂有可能提高抗肿瘤疗效。在这里,我们研究了一组具有不同 HPV 和 p53 状态的 HNSCC 模型对 IR、DNA-PKcs 抑制以及它们在体外和体内联合治疗的反应。红外诱导的DNA损伤加上红外前不久服用培泊色替布会降低细胞活力和增殖,并导致所有研究的HNSCC细胞系的DNA修复延迟。然而,我们的数据证实,细胞在接受这种治疗后的实际命运取决于细胞的 p53 和/或 HPV 状态。因 HPV 降解或功能缺失突变而缺乏功能性 p53 的细胞会停滞在细胞周期的 G2/M 阶段,并被细胞凋亡所淘汰,而 p53 功能健全的 HNSCC 细胞系则更倾向于衰老。这在体内也得到了再现,与 p53 野生型 UM-SCC-74A 肿瘤相比,HPV+ UD-SCC-2 异种移植对联合治疗的反应更强、更持久。总之,DNA-PKcs抑制剂培泊塞替布应作为HNSCC的潜在放射增敏剂加以进一步研究,同时考虑到特定肿瘤的遗传背景和HPV状态。
{"title":"HPV and p53 status as precision determinants of head and neck cancer response to DNA-PKcs inhibition in combination with irradiation.","authors":"Liana Hayrapetyan, Selina Moara Roth, Aurélie Quintin, Lusine Hovhannisyan, Matúš Medo, Rahel Riedo, Julien G Ott, Joachim Albers, Daniel M Aebersold, Yitzhak Zimmer, Michaela Medová","doi":"10.1158/1535-7163.MCT-23-0794","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0794","url":null,"abstract":"<p><p>Major risk factors of head and neck squamous cell carcinoma (HNSCC) are tobacco use and human papillomavirus (HPV). HPV E6 oncoprotein leads to p53 degradation, whereas HPV-negative cancers are frequently associated with TP53 mutations. Peposertib is a potent and selective, orally administered small-molecule inhibitor of the catalytic subunit of the DNA-dependent kinase (DNA-PKcs), a key regulator of non-homologous end joining (NHEJ). NHEJ inhibition along with irradiation (IR)-induced DNA double-strand breaks has the potential to increase antitumor treatment efficacy. Here, we investigated the responses of a panel of HNSCC models with distinct HPV and p53 status to treatments with IR, DNA-PKcs inhibition, and their combination in-vitro and in-vivo. IR-induced DNA damage combined with peposertib administration shortly before IR results in decreased cell viability and proliferation and causes DNA repair delay in all studied HNSCC cell lines. However, our data confirm that the actual cell fate upon this treatment is determined by cellular p53 and/or HPV status. Cells lacking functional p53 due to its degradation by HPV or due to a loss-of-function mutation are arrested in the G2/M phase of the cell cycle and eliminated by apoptosis whereas p53-proficient HNSCC cell lines preferentially undergo senescence. This is also recapitulated in-vivo, where HPV+ UD-SCC-2 xenografts display stronger and more durable responses to the combined treatment as compared to p53 wild-type UM-SCC-74A tumors. In conclusion, DNA-PKcs inhibitor peposertib should be further studied as a potential radiosensitizer for HNSCCs, taking into consideration the genetic background and the HPV status of a particular tumor.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trastuzumab-MMAU Antibody-Auristatin Conjugates: Valine-Glucoserine Linker with Stabilized Maleimide Conjugation Improves In Vivo Efficacy and Tolerability. 曲妥珠单抗-MMAU 抗体-尿促性素共轭物:缬氨酸-葡萄糖丝氨酸连接体与稳定马来酰亚胺共轭可提高体内疗效和耐受性。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0591
Shalom D Goldberg, Tero Satomaa, Olulanu Aina, Olli Aitio, Krista Burke, Vadim Dudkin, Brian Geist, Onyi Irrechukwu, Anna-Liisa Hänninen, Annamari Heiskanen, Jari Helin, Jukka O Hiltunen, Jacqueline Kinyamu-Akunda, Donna M Klein, Neeraj Kohli, Titta Kotiranta, Tuula Lähteenmäki, Ritva Niemelä, Virve Pitkänen, Henna Pynnönen, William Rittase, Kristen Wiley, Junguo Zhou, Juhani Saarinen

Antibody-drug conjugates (ADC) have shown impressive clinical activity with approval of many agents in hematologic and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic monomethylauristatin E (MMAE) prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window. Trastuzumab was conjugated with auristatin payloads via a series of linkers using a stabilized maleimide handle. The ADCs were characterized in vitro and their relative in vivo antitumor efficacies were assessed in HER2+ xenograft models. Relative linker stabilities and the mechanism of linker cleavage were studied using in vitro assays. Toxicity and toxicokinetics of the best performing ADC were evaluated in cynomolgus monkey (cyno). The trastuzumab-MMAU ADC with stabilized glycopeptide linker showed maleimide stabilization and higher resistance to cleavage by serum and lysosomal enzymes compared with a valine-citrulline conjugated trastuzumab ADC (trastuzumab-vc-MMAE). A single dose of 1 or 2 mg/kg of trastuzumab-MMAU at drug-to-antibody ratios (DAR) of eight and four respectively resulted in xenograft tumor growth inhibition, with superior efficacy to trastuzumab-vc-MMAE. Trastuzumab-MMAUDAR4 was tolerated at doses up to 12 mg/kg in cyno, which represents 2- to 4-fold higher dose than that observed with vedotin ADCs, and had increased terminal half-life and exposure. The optimized trastuzumab-MMAU ADC showed potent antitumor activity and was well tolerated with excellent pharmacokinetics in nonhuman primates, leading to a superior preclinical therapeutic window. The data support potential utility of trastuzumab-MMAU for treatment of HER2+ tumors.

目的:抗体药物共轭物(ADC)已显示出令人印象深刻的临床活性,许多治疗血液病和实体瘤的药物已获得批准。然而,ADC 的疗效和安全性仍面临挑战。本研究介绍了亲水性MMAE原药MMAU与新型曲妥珠单抗-金刚烷胺共轭物,并对糖肽连接体进行了优化,从而拓宽了治疗窗口:实验设计:使用稳定的马来酰亚胺手柄,通过一系列连接体将曲妥珠单抗与奥司他丁有效载荷共轭。对 ADC 进行了体外表征,并在 HER2+ 异种移植模型中评估了其体内抗肿瘤疗效。利用体外试验研究了连接体的相对稳定性和连接体裂解的机制。在犬科猴(cynomolgus monkey)体内评估了性能最好的 ADC 的毒性和毒代动力学:结果:与缬氨酸-瓜氨酸共轭的曲妥珠单抗 ADC(曲妥珠单抗-vc-MMAE)相比,具有稳定糖肽连接体的曲妥珠单抗-MMAU ADC 显示出马来酰亚胺稳定性和更强的抗血清和溶酶体酶裂解能力。单剂量 1 或 2 mg/kg 曲妥珠单抗-MMAU 的药物抗体比(DAR)分别为 8 和 4,可抑制异种移植肿瘤的生长,疗效优于曲妥珠单抗-vc-MMAE。曲妥珠单抗-MMAU DAR4在犬体内的耐受剂量高达12毫克/千克,是维多汀ADC剂量的2至4倍,而且末端半衰期和暴露量都有所增加:结论:优化后的曲妥珠单抗-MMAU ADC 在非人灵长类动物体内显示出了强大的抗肿瘤活性、良好的耐受性和出色的药代动力学,为临床前治疗开辟了广阔的前景。这些数据支持了曲妥珠单抗-MMAU 治疗 HER2+ 肿瘤的潜在用途。
{"title":"Trastuzumab-MMAU Antibody-Auristatin Conjugates: Valine-Glucoserine Linker with Stabilized Maleimide Conjugation Improves In Vivo Efficacy and Tolerability.","authors":"Shalom D Goldberg, Tero Satomaa, Olulanu Aina, Olli Aitio, Krista Burke, Vadim Dudkin, Brian Geist, Onyi Irrechukwu, Anna-Liisa Hänninen, Annamari Heiskanen, Jari Helin, Jukka O Hiltunen, Jacqueline Kinyamu-Akunda, Donna M Klein, Neeraj Kohli, Titta Kotiranta, Tuula Lähteenmäki, Ritva Niemelä, Virve Pitkänen, Henna Pynnönen, William Rittase, Kristen Wiley, Junguo Zhou, Juhani Saarinen","doi":"10.1158/1535-7163.MCT-23-0591","DOIUrl":"10.1158/1535-7163.MCT-23-0591","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADC) have shown impressive clinical activity with approval of many agents in hematologic and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic monomethylauristatin E (MMAE) prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window. Trastuzumab was conjugated with auristatin payloads via a series of linkers using a stabilized maleimide handle. The ADCs were characterized in vitro and their relative in vivo antitumor efficacies were assessed in HER2+ xenograft models. Relative linker stabilities and the mechanism of linker cleavage were studied using in vitro assays. Toxicity and toxicokinetics of the best performing ADC were evaluated in cynomolgus monkey (cyno). The trastuzumab-MMAU ADC with stabilized glycopeptide linker showed maleimide stabilization and higher resistance to cleavage by serum and lysosomal enzymes compared with a valine-citrulline conjugated trastuzumab ADC (trastuzumab-vc-MMAE). A single dose of 1 or 2 mg/kg of trastuzumab-MMAU at drug-to-antibody ratios (DAR) of eight and four respectively resulted in xenograft tumor growth inhibition, with superior efficacy to trastuzumab-vc-MMAE. Trastuzumab-MMAUDAR4 was tolerated at doses up to 12 mg/kg in cyno, which represents 2- to 4-fold higher dose than that observed with vedotin ADCs, and had increased terminal half-life and exposure. The optimized trastuzumab-MMAU ADC showed potent antitumor activity and was well tolerated with excellent pharmacokinetics in nonhuman primates, leading to a superior preclinical therapeutic window. The data support potential utility of trastuzumab-MMAU for treatment of HER2+ tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1530-1543"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor Microenvironment Reprogramming Improves Nanomedicine-Based Chemo-Immunotherapy in Sarcomas. 肿瘤微环境重编程可改善肉瘤的纳米药物化疗免疫疗法。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0772
Antonia Charalambous, Fotios Mpekris, Myrofora Panagi, Chrysovalantis Voutouri, Christina Michael, Alberto A Gabizon, Triantafyllos Stylianopoulos

Sarcomas are a heterogeneous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases make treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which leads to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher toxic doses of chemotherapy. In this study, we tested the mechanotherapeutic ketotifen combined with either pegylated liposomal doxorubicin (PLD) or pegylated liposomal coencapsulated alendronate-doxorubicin (PLAD) plus anti-programmed cell death protein 1 antibody in mouse models of fibrosarcoma and osteosarcoma. We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave elastography and contrast-enhanced ultrasound, respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. Furthermore, we observed a trend toward improved antitumor responses when nano-chemotherapy is given alongside anti-programmed cell death protein 1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper cells, and decreased the number of regulatory T cells. In addition, the combination also altered the polarization of tumor-associated macrophages, favoring the M1 immune-supportive phenotype over the M2 immunosuppressive phenotype. Collectively, our findings provide evidence that ketotifen-induced TME reprogramming can improve the efficacy of nanomedicine-based chemo-immunotherapy in sarcomas.

背景/简介:肉瘤是一类起源于软组织或骨骼的异质性罕见癌症。肉瘤的复杂性和转移倾向使治疗具有挑战性,因此需要新的治疗方法来提高患者的生存率。治疗这些癌症的困难主要源于肿瘤微环境(TME)的异常,这种异常会导致肿瘤内的血流和氧气水平降低。因此,这阻碍了药物向肿瘤的有效输送,并降低了治疗效果,尽管化疗剂量更高、毒性更强。在此,我们在纤维肉瘤和骨肉瘤小鼠模型中测试了机械治疗药物酮替芬与聚乙二醇化脂质体多柔比星(PLD)或聚乙二醇化脂质体共囊阿仑膦酸-多柔比星(PLAD)加抗-PD-1抗体的组合:结果:我们发现酮替芬通过降低肿瘤僵硬度和增加血流灌注成功地对TME进行了重编程(分别通过剪切波弹性成像(SWE)和对比增强超声(CEUS)测量到的变化证明了这一点),并增强了我们基于纳米药物的化疗免疫疗法方案的疗效。另一个观察结果是,当纳米化疗与抗PD1同时进行,并且治疗中含有免疫调节剂阿仑膦酸盐时,抗肿瘤反应有改善的趋势。我们接下来研究了这种组合的作用机制。酮替芬与基于纳米药物的化疗免疫疗法相结合,增加了T细胞浸润,特别是细胞毒性CD8+ T细胞和CD4+ T辅助细胞,并减少了调节性T细胞的数量。此外,联合疗法还改变了肿瘤相关巨噬细胞的极化,使M1免疫支持表型优于M2免疫抑制表型:总之,我们的研究结果提供了证据,证明酮替芬诱导的TME重编程可提高基于纳米药物的肉瘤化疗免疫疗法的疗效。
{"title":"Tumor Microenvironment Reprogramming Improves Nanomedicine-Based Chemo-Immunotherapy in Sarcomas.","authors":"Antonia Charalambous, Fotios Mpekris, Myrofora Panagi, Chrysovalantis Voutouri, Christina Michael, Alberto A Gabizon, Triantafyllos Stylianopoulos","doi":"10.1158/1535-7163.MCT-23-0772","DOIUrl":"10.1158/1535-7163.MCT-23-0772","url":null,"abstract":"<p><p>Sarcomas are a heterogeneous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases make treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which leads to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher toxic doses of chemotherapy. In this study, we tested the mechanotherapeutic ketotifen combined with either pegylated liposomal doxorubicin (PLD) or pegylated liposomal coencapsulated alendronate-doxorubicin (PLAD) plus anti-programmed cell death protein 1 antibody in mouse models of fibrosarcoma and osteosarcoma. We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave elastography and contrast-enhanced ultrasound, respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. Furthermore, we observed a trend toward improved antitumor responses when nano-chemotherapy is given alongside anti-programmed cell death protein 1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper cells, and decreased the number of regulatory T cells. In addition, the combination also altered the polarization of tumor-associated macrophages, favoring the M1 immune-supportive phenotype over the M2 immunosuppressive phenotype. Collectively, our findings provide evidence that ketotifen-induced TME reprogramming can improve the efficacy of nanomedicine-based chemo-immunotherapy in sarcomas.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1555-1567"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
YAP1 Suppression by ZDHHC7 Is Associated with Ferroptosis Resistance and Poor Prognosis in Ovarian Clear Cell Carcinoma. ZDHHC7对YAP1的抑制与卵巢透明细胞癌的抗铁性和不良预后有关。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-24-0145
Yoko Furutake, Ken Yamaguchi, Koji Yamanoi, Sachiko Kitamura, Shiro Takamatsu, Mana Taki, Masayo Ukita, Yuko Hosoe, Ryusuke Murakami, Kaoru Abiko, Akihito Horie, Junzo Hamanishi, Tsukasa Baba, Noriomi Matsumura, Masaki Mandai

Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment because of excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear yes-associated protein 1 (YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.

卵巢透明细胞癌(OCCC)具有独特的临床特征,它产生于良性子宫内膜异位囊肿,由于铁积累过多而形成氧化应激环境,预后较差,尤其是在晚期,因为对传统疗法具有抗药性。铁凋亡是由脂质过氧化诱导的一种铁依赖性细胞程序性死亡形式,由希波信号传导控制。我们推测,由于 OCCC 在其发展过程中获得了氧化应激抗性,并表现出表明铁氧化抗性的化疗抗性特征,因此克服铁氧化抗性是一种有吸引力的策略。本研究旨在确定 OCCC 是否对铁蛋白沉积产生耐药性,并阐明耐药性的机制。与卵巢高级别浆液性癌细胞不同,OCCC细胞暴露于氧化应激。然而,OCCC细胞不受脂质过氧化的影响。细胞活力测定显示,OCCC细胞对铁突变诱导剂麦拉宁(erastin)具有抗性。此外,Samroc分析表明,OCCC细胞系和临床样本中富含Hippo信号通路。此外,核Yes相关蛋白1(YAP1)低表达的患者预后明显较差。此外,YAP1的激活增强了OCCC细胞系中的铁突变。此外,抑制锌指DHHC型棕榈酰基转移酶7(ZDHHC7)可通过激活YAP1增强OCCC细胞株的铁变态反应。小鼠异种移植模型表明,抑制 ZDHHC7 可通过依拉斯汀治疗激活 YAP1 来抑制肿瘤生长。总之,ZDHHC7调节的YAP1活化增强了OCCC细胞的铁突变。因此,克服铁突变耐药性是治疗 OCCC 的一种潜在策略。
{"title":"YAP1 Suppression by ZDHHC7 Is Associated with Ferroptosis Resistance and Poor Prognosis in Ovarian Clear Cell Carcinoma.","authors":"Yoko Furutake, Ken Yamaguchi, Koji Yamanoi, Sachiko Kitamura, Shiro Takamatsu, Mana Taki, Masayo Ukita, Yuko Hosoe, Ryusuke Murakami, Kaoru Abiko, Akihito Horie, Junzo Hamanishi, Tsukasa Baba, Noriomi Matsumura, Masaki Mandai","doi":"10.1158/1535-7163.MCT-24-0145","DOIUrl":"10.1158/1535-7163.MCT-24-0145","url":null,"abstract":"<p><p>Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment because of excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear yes-associated protein 1 (YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1652-1665"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual A2A/A2B Adenosine Receptor Antagonist M1069 Counteracts Immunosuppressive Mechanisms of Adenosine and Reduces Tumor Growth In Vivo. 双重 A2A/ A2B 腺苷受体拮抗剂 M1069 可抵消腺苷的免疫抑制机制并减少体内肿瘤生长。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0843
Kai Schiemann, Natalya Belousova, Armine Matevossian, Kalyan C Nallaparaju, Giorgio Kradjian, Meghana Pandya, Zhouxiang Chen, Esengul Aral, Eva-Maria Krauel, Elissaveta Petrova, Carsten Boesler, Thomas Kitzing, Marc Lecomte, Christian Wagner, Anne Laure Blayo, Stephan Schann, Bayard Huck, Jacques Moisan, Rinat Zaynagetdinov

While A2A adenosine receptor (AR) was considered as a major contributor to adenosine-mediated immunosuppression, A2B, having the lowest affinity to adenosine, has also emerged as a potential contributor to tumor promotion. Therefore, in adenosine-rich tumor microenvironment (TME), where A2B could be complementary and/or compensatory to A2A, simultaneous targeting of A2A and A2B ARs can provide higher potential for cancer immunotherapy. We developed M1069-a highly selective dual antagonist of the A2A and A2B AR. In assays with primary human and murine immune cells, M1069 rescued IL2 production from T cells (A2A dependent) and inhibited VEGF production by myeloid cells (A2B dependent) in adenosine-high settings. M1069 also demonstrated superior suppression of the secretion of protumorigenic cytokines CXCL1, CXCL5, and rescue of IL12 secretion from adenosine-differentiated dendritic cells compared to an A2A-selective antagonist (A2Ai). In a one-way mixed lymphocyte reaction (MLR) assay, adenosine-differentiated human and murine dendritic cells treated with M1069 demonstrated superior T-cell stimulatory activity compared to dendritic cells differentiated in presence of A2Ai. In vivo, M1069 decreased tumor growth as a monotherapy and enhanced antitumor activity of bintrafusp alfa (BA) or cisplatin in syngeneic adenosinehi/CD73hi 4T1 breast tumor model, but not in the CD73 knockout 4T1 tumor model or in adenosinelow/CD73low MC38 murine colon carcinoma model. In summary, our dual A2A/A2B AR antagonist M1069 may counteract immune-suppressive mechanisms of high concentrations of adenosine in vitro and in vivo and enhance the antitumor activity of other agents, including BA and cisplatin.

虽然 A2A 腺苷受体(AR)被认为是腺苷介导的免疫抑制的主要贡献者,但与腺苷亲和力最低的 A2B 也已成为肿瘤促进的潜在贡献者。因此,在富含腺苷的肿瘤微环境(TME)中,A2B 可作为 A2A 的补充和/或补偿,同时靶向 A2A 和 A2B ARs 可为癌症免疫疗法提供更大的潜力。我们开发了一种高选择性 A2A 和 A2B AR 双拮抗剂 M1069。在使用原代人类和鼠类免疫细胞进行的试验中,M1069 可在腺苷含量较高的情况下挽救 T 细胞产生的 IL 2(依赖于 A2A),并抑制髓系细胞产生的 VEGF(依赖于 A2B)。与 A2A 选择性拮抗剂(A2Ai)相比,M1069 还能更好地抑制促肿瘤细胞因子 CXCL1 和 CXCL5 的分泌,并挽救腺苷分化树突状细胞 IL 12 的分泌。在单向混合淋巴细胞反应(MLR)试验中,与在 A2Ai 存在下分化的树突状细胞相比,经 M1069 处理的腺苷分化的人和鼠树突状细胞表现出更强的 T 细胞刺激活性。在体内,M1069 作为一种单一疗法能降低肿瘤生长,并能增强腺苷酸/CD73hi 4T1 乳腺癌模型的抗肿瘤活性,但不能增强 CD73 基因敲除(KO)4T1 肿瘤模型或腺苷酸低/CD73 低 MC38 小鼠结肠癌模型的抗肿瘤活性。总之,我们的 A2A/A2B AR 双拮抗剂 M1069 可抵消体外和体内高浓度腺苷的免疫抑制机制,并增强其他药物(包括 BA 和顺铂)的抗肿瘤活性。
{"title":"Dual A2A/A2B Adenosine Receptor Antagonist M1069 Counteracts Immunosuppressive Mechanisms of Adenosine and Reduces Tumor Growth In Vivo.","authors":"Kai Schiemann, Natalya Belousova, Armine Matevossian, Kalyan C Nallaparaju, Giorgio Kradjian, Meghana Pandya, Zhouxiang Chen, Esengul Aral, Eva-Maria Krauel, Elissaveta Petrova, Carsten Boesler, Thomas Kitzing, Marc Lecomte, Christian Wagner, Anne Laure Blayo, Stephan Schann, Bayard Huck, Jacques Moisan, Rinat Zaynagetdinov","doi":"10.1158/1535-7163.MCT-23-0843","DOIUrl":"10.1158/1535-7163.MCT-23-0843","url":null,"abstract":"<p><p>While A2A adenosine receptor (AR) was considered as a major contributor to adenosine-mediated immunosuppression, A2B, having the lowest affinity to adenosine, has also emerged as a potential contributor to tumor promotion. Therefore, in adenosine-rich tumor microenvironment (TME), where A2B could be complementary and/or compensatory to A2A, simultaneous targeting of A2A and A2B ARs can provide higher potential for cancer immunotherapy. We developed M1069-a highly selective dual antagonist of the A2A and A2B AR. In assays with primary human and murine immune cells, M1069 rescued IL2 production from T cells (A2A dependent) and inhibited VEGF production by myeloid cells (A2B dependent) in adenosine-high settings. M1069 also demonstrated superior suppression of the secretion of protumorigenic cytokines CXCL1, CXCL5, and rescue of IL12 secretion from adenosine-differentiated dendritic cells compared to an A2A-selective antagonist (A2Ai). In a one-way mixed lymphocyte reaction (MLR) assay, adenosine-differentiated human and murine dendritic cells treated with M1069 demonstrated superior T-cell stimulatory activity compared to dendritic cells differentiated in presence of A2Ai. In vivo, M1069 decreased tumor growth as a monotherapy and enhanced antitumor activity of bintrafusp alfa (BA) or cisplatin in syngeneic adenosinehi/CD73hi 4T1 breast tumor model, but not in the CD73 knockout 4T1 tumor model or in adenosinelow/CD73low MC38 murine colon carcinoma model. In summary, our dual A2A/A2B AR antagonist M1069 may counteract immune-suppressive mechanisms of high concentrations of adenosine in vitro and in vivo and enhance the antitumor activity of other agents, including BA and cisplatin.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1517-1529"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Therapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1