Genomic patterns of somatic mutations provide new prognostic, therapeutic, and biological insights in cancer.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-08-14 DOI:10.1016/j.xgen.2024.100635
Dana Tseitline, Yuval Cohen, Sheera Adar
{"title":"Genomic patterns of somatic mutations provide new prognostic, therapeutic, and biological insights in cancer.","authors":"Dana Tseitline, Yuval Cohen, Sheera Adar","doi":"10.1016/j.xgen.2024.100635","DOIUrl":null,"url":null,"abstract":"<p><p>The mutational landscape of an individual's cancer can inform on its molecular state and be used as prognostic and therapeutic markers. The study by Barbour et al.<sup>1</sup> analyzes mutational patterns in bladder cancer samples to uncover new biological insights into the ERCC2 gene function and develop new predictive prognostic tools.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 8","pages":"100635"},"PeriodicalIF":11.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mutational landscape of an individual's cancer can inform on its molecular state and be used as prognostic and therapeutic markers. The study by Barbour et al.1 analyzes mutational patterns in bladder cancer samples to uncover new biological insights into the ERCC2 gene function and develop new predictive prognostic tools.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体细胞突变的基因组模式为癌症的预后、治疗和生物学研究提供了新的视角。
个体癌症的突变情况可以反映其分子状态,并可作为预后和治疗标志物。Barbour等人1的研究分析了膀胱癌样本的突变模式,揭示了ERCC2基因功能的新生物学见解,并开发了新的预测预后工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
A combined deep learning framework for mammalian m6A site prediction. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1