Optogenetic manipulation of lysosomal physiology and autophagic activity.

Autophagy Pub Date : 2024-11-01 Epub Date: 2024-08-28 DOI:10.1080/15548627.2024.2392464
Wenping Zeng, Canjun Li, Lili Qu, Chunlei Cang
{"title":"Optogenetic manipulation of lysosomal physiology and autophagic activity.","authors":"Wenping Zeng, Canjun Li, Lili Qu, Chunlei Cang","doi":"10.1080/15548627.2024.2392464","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosomes are essential degradative organelles and signaling hubs within cells, playing a crucial role in the regulation of macroautophagy/autophagy. Dysfunction of lysosomes and impaired autophagy are closely associated with the development of various neurodegenerative diseases. Enhancing lysosomal activity and boosting autophagy levels holds great promise as effective strategies for treating these diseases. However, there remains a lack of methods to dynamically regulate lysosomal activity and autophagy levels in living cells or animals. In our recent work, we applied optogenetics to manipulate lysosomal physiology and function, developing three lysosome-targeted optogenetic tools: lyso-NpHR3.0, lyso-ArchT, and lyso-ChR2. These new actuators enable light-dependent regulation of key aspects such as lysosomal membrane potential, lumenal pH, hydrolase activity, degradation processes, and Ca<sup>2+</sup> dynamics in living cells. Notably, lyso-ChR2 activation induces autophagy via the MTOR pathway while it promotes Aβ clearance through autophagy induction in cellular models of Alzheimer disease. Furthermore, lyso-ChR2 activation reduces Aβ deposition and alleviates Aβ-induced paralysis in <i>Caenorhabditis elegans</i> models of Alzheimer disease. Our lysosomal optogenetic actuators offer a novel method for dynamically regulating lysosomal physiology and autophagic activity in living cells and animals.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2392464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lysosomes are essential degradative organelles and signaling hubs within cells, playing a crucial role in the regulation of macroautophagy/autophagy. Dysfunction of lysosomes and impaired autophagy are closely associated with the development of various neurodegenerative diseases. Enhancing lysosomal activity and boosting autophagy levels holds great promise as effective strategies for treating these diseases. However, there remains a lack of methods to dynamically regulate lysosomal activity and autophagy levels in living cells or animals. In our recent work, we applied optogenetics to manipulate lysosomal physiology and function, developing three lysosome-targeted optogenetic tools: lyso-NpHR3.0, lyso-ArchT, and lyso-ChR2. These new actuators enable light-dependent regulation of key aspects such as lysosomal membrane potential, lumenal pH, hydrolase activity, degradation processes, and Ca2+ dynamics in living cells. Notably, lyso-ChR2 activation induces autophagy via the MTOR pathway while it promotes Aβ clearance through autophagy induction in cellular models of Alzheimer disease. Furthermore, lyso-ChR2 activation reduces Aβ deposition and alleviates Aβ-induced paralysis in Caenorhabditis elegans models of Alzheimer disease. Our lysosomal optogenetic actuators offer a novel method for dynamically regulating lysosomal physiology and autophagic activity in living cells and animals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶酶体生理学和自噬活性的光遗传学操纵。
溶酶体是细胞内重要的降解细胞器和信号枢纽,在调节大自噬/自噬过程中发挥着至关重要的作用。溶酶体功能障碍和自噬功能受损与各种神经退行性疾病的发生密切相关。增强溶酶体活性和提高自噬水平有望成为治疗这些疾病的有效策略。然而,目前仍缺乏在活细胞或动物体内动态调节溶酶体活性和自噬水平的方法。在我们最近的工作中,我们应用光遗传学操纵溶酶体的生理和功能,开发了三种溶酶体靶向光遗传学工具:溶酶体-NpHR3.0、溶酶体-ArchT 和溶酶体-ChR2。这些新的致动器能在活细胞中对溶酶体膜电位、腔内pH值、水解酶活性、降解过程和Ca2+动态等关键方面进行光依赖性调控。值得注意的是,在阿尔茨海默病的细胞模型中,溶酶体-ChR2 的激活可通过 MTOR 途径诱导自噬,同时通过自噬诱导促进 Aβ 的清除。此外,溶酶体-ChR2 的激活还能减少 Aβ 的沉积,并减轻 Aβ 在秀丽隐杆线虫阿尔茨海默病模型中诱发的瘫痪。我们的溶酶体光遗传致动器为动态调节活细胞和动物的溶酶体生理学和自噬活动提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deciphering melanophagy: role of the PTK2-ITCH-MLANA-OPTN cascade on melanophagy in melanocytes. HSP90 N-terminal inhibition promotes mitochondria-derived vesicles related metastasis by reducing TFEB transcription via decreased HSP90AA1-HCFC1 interaction in liver cancer. Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1). PINK1-deficiency facilitates mitochondrial iron accumulation and colon tumorigenesis. Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1