S2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR.

Jialun Pei, Diandian Guo, Jingyang Zhang, Manxi Lin, Yueming Jin, Pheng-Ann Heng
{"title":"S<sup>2</sup>Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR.","authors":"Jialun Pei, Diandian Guo, Jingyang Zhang, Manxi Lin, Yueming Jin, Pheng-Ann Heng","doi":"10.1109/TMI.2024.3444279","DOIUrl":null,"url":null,"abstract":"<p><p>Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR). However, previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection. This pipeline may potentially compromise the flexibility of learning multimodal representations, consequently constraining the overall effectiveness. In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed, S<sup>2</sup>Former-OR, aimed to complementally leverage multi-view 2D scenes and 3D point clouds for SGG in an end-to-end manner. Concretely, our model embraces a View-Sync Transfusion scheme to encourage multi-view visual information interaction. Concurrently, a Geometry-Visual Cohesion operation is designed to integrate the synergic 2D semantic features into 3D point cloud features. Moreover, based on the augmented feature, we propose a novel relation-sensitive transformer decoder that embeds dynamic entity-pair queries and relational trait priors, which enables the direct prediction of entity-pair relations for graph generation without intermediate steps. Extensive experiments have validated the superior SGG performance and lower computational cost of S<sup>2</sup>Former-OR on 4D-OR benchmark, compared with current OR-SGG methods, e.g., 3 percentage points Precision increase and 24.2M reduction in model parameters. We further compared our method with generic single-stage SGG methods with broader metrics for a comprehensive evaluation, with consistently better performance achieved. Our source code can be made available at: https://github.com/PJLallen/S2Former-OR.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3444279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR). However, previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection. This pipeline may potentially compromise the flexibility of learning multimodal representations, consequently constraining the overall effectiveness. In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed, S2Former-OR, aimed to complementally leverage multi-view 2D scenes and 3D point clouds for SGG in an end-to-end manner. Concretely, our model embraces a View-Sync Transfusion scheme to encourage multi-view visual information interaction. Concurrently, a Geometry-Visual Cohesion operation is designed to integrate the synergic 2D semantic features into 3D point cloud features. Moreover, based on the augmented feature, we propose a novel relation-sensitive transformer decoder that embeds dynamic entity-pair queries and relational trait priors, which enables the direct prediction of entity-pair relations for graph generation without intermediate steps. Extensive experiments have validated the superior SGG performance and lower computational cost of S2Former-OR on 4D-OR benchmark, compared with current OR-SGG methods, e.g., 3 percentage points Precision increase and 24.2M reduction in model parameters. We further compared our method with generic single-stage SGG methods with broader metrics for a comprehensive evaluation, with consistently better performance achieved. Our source code can be made available at: https://github.com/PJLallen/S2Former-OR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
S2Former-OR:用于在 OR 中生成场景图的单级双模变换器。
手术过程的场景图生成(SGG)对于提高手术室(OR)的整体认知智能至关重要。然而,以前的工作主要依赖于多阶段学习,其中生成的语义场景图依赖于姿势估计和物体检测的中间过程。这种流水线可能会影响多模态表征学习的灵活性,从而制约整体效果。在本研究中,我们引入了一种新颖的单级双模态转换器框架,用于在OR中进行SGG,称为S2Former-OR,旨在以端到端的方式利用多视角二维场景和三维点云对SGG进行互补。具体来说,我们的模型采用视图同步转换方案,鼓励多视图视觉信息交互。同时,我们还设计了几何-视觉内聚操作,将协同的二维语义特征整合到三维点云特征中。此外,在增强特征的基础上,我们提出了一种新颖的关系敏感变换解码器,该解码器嵌入了动态实体对查询和关系特质先验,可直接预测实体对关系以生成图,而无需中间步骤。广泛的实验验证了 S2Former-OR 在 4D-OR 基准上比当前的 OR-SGG 方法具有更优越的 SGG 性能和更低的计算成本,例如精度提高了 3 个百分点,模型参数减少了 2420 万个。我们还进一步将我们的方法与通用的单级 SGG 方法进行了比较,并采用了更广泛的指标进行综合评估,结果显示我们的方法始终具有更好的性能。我们的源代码可在以下网址获取:https://github.com/PJLallen/S2Former-OR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1