Suppressing cyclic deactivation of magnesium-calcium dual-functional materials via dispersed metal-carbonate interfaces for integrated CO2 capture and conversion

{"title":"Suppressing cyclic deactivation of magnesium-calcium dual-functional materials via dispersed metal-carbonate interfaces for integrated CO2 capture and conversion","authors":"","doi":"10.1016/j.ccst.2024.100275","DOIUrl":null,"url":null,"abstract":"<div><p>The integrated CO<sub>2</sub> capture and utilization employs chemical looping approach for suppressing the equilibrium limitations of traditional gas-solid catalytic reactions, enabling efficient conversion of dilute CO<sub>2</sub> into high-value fuels with minimal energy consumption. However, the diminishing cyclic activity of dual-functional materials poses significant challenges to their industrial application. Herein, we tailored a series of magnesium-calcium materials, the influence of coordinated metals on the cyclic performance were quantitatively investigated. Notably, Fe<sub>2</sub>Ni<sub>2</sub>Ce<sub>2</sub>Mg<sub>5</sub>Ca<sub>20</sub>CO<sub>3</sub> achieves a cumulative CO yield of 121.0 mmol/g over 15 cycles at 650°C, with a maximum CO yield of 8.3 mmol/g per cycle and 99.0% CO selectivity, and its CO<sub>2</sub> capture capacity remains stable at 10.6 mmol/g over 37 adsorption/desorption cycles. Experimental results indicate that lattice phase separation is a fundamental mechanism underlying the decline in cyclic activity. The strategic incorporation of transition metal intermediates promotes the formation of dispersed metal-carbonate interfaces, providing surface hydrogenation sites and accelerating the lattice decomposition and reconstruction of CO<sub>3</sub>* within a dispersed lattice. This modification mitigates the adsorption/catalytic lattice phase separation, boosts metal migration and deoxygenation activity for cyclic nanoparticle construction. The findings offer valuable strategies for designing highly efficient and stable DFMs in CO<sub>2</sub> capture and utilization.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000873/pdfft?md5=825fff2bf9fee572d40a1f50428a96f9&pid=1-s2.0-S2772656824000873-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated CO2 capture and utilization employs chemical looping approach for suppressing the equilibrium limitations of traditional gas-solid catalytic reactions, enabling efficient conversion of dilute CO2 into high-value fuels with minimal energy consumption. However, the diminishing cyclic activity of dual-functional materials poses significant challenges to their industrial application. Herein, we tailored a series of magnesium-calcium materials, the influence of coordinated metals on the cyclic performance were quantitatively investigated. Notably, Fe2Ni2Ce2Mg5Ca20CO3 achieves a cumulative CO yield of 121.0 mmol/g over 15 cycles at 650°C, with a maximum CO yield of 8.3 mmol/g per cycle and 99.0% CO selectivity, and its CO2 capture capacity remains stable at 10.6 mmol/g over 37 adsorption/desorption cycles. Experimental results indicate that lattice phase separation is a fundamental mechanism underlying the decline in cyclic activity. The strategic incorporation of transition metal intermediates promotes the formation of dispersed metal-carbonate interfaces, providing surface hydrogenation sites and accelerating the lattice decomposition and reconstruction of CO3* within a dispersed lattice. This modification mitigates the adsorption/catalytic lattice phase separation, boosts metal migration and deoxygenation activity for cyclic nanoparticle construction. The findings offer valuable strategies for designing highly efficient and stable DFMs in CO2 capture and utilization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分散金属-碳酸盐界面抑制镁钙双功能材料的循环失活,实现二氧化碳的综合捕获和转化
二氧化碳捕获和综合利用采用化学循环方法来抑制传统气固催化反应的平衡限制,从而以最小的能耗将稀薄的二氧化碳高效转化为高价值燃料。然而,双功能材料的循环活性不断降低,给其工业应用带来了巨大挑战。在此,我们定制了一系列镁钙材料,定量研究了配位金属对其循环性能的影响。值得注意的是,Fe2Ni2Ce2Mg5Ca20CO3 在 650°C 下循环 15 次,累计 CO 产率达到 121.0 mmol/g,每次循环的最大 CO 产率为 8.3 mmol/g,CO 选择性达到 99.0%,并且在 37 次吸附/解吸循环中,其 CO2 捕获能力稳定在 10.6 mmol/g。实验结果表明,晶格相分离是导致循环活性下降的基本机制。过渡金属中间体的战略性加入促进了分散金属-碳酸盐界面的形成,提供了表面氢化位点,加速了分散晶格内 CO3* 的晶格分解和重构。这种改性减轻了吸附/催化晶格相分离,提高了金属迁移和脱氧活性,从而构建了循环纳米粒子。这些发现为在二氧化碳捕获和利用中设计高效稳定的 DFMs 提供了宝贵的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breakthroughs in CH4 capture technologies: Key to reducing fugitive methane emissions in the energy sector Thermal characterization and moisture adsorption performance of calcium alginate hydrogel/silica gel/polyvinylpyrrolidone/expanded graphite composite desiccant Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1