Room temperature synthesis of Ce based UiO-66 and UiO-66-NH2 metal organic frameworks for arsenic adsorption from aqueous solution

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED Microporous and Mesoporous Materials Pub Date : 2024-08-13 DOI:10.1016/j.micromeso.2024.113299
Nitin Gumber , Jaspreet Singh , Rajesh V. Pai
{"title":"Room temperature synthesis of Ce based UiO-66 and UiO-66-NH2 metal organic frameworks for arsenic adsorption from aqueous solution","authors":"Nitin Gumber ,&nbsp;Jaspreet Singh ,&nbsp;Rajesh V. Pai","doi":"10.1016/j.micromeso.2024.113299","DOIUrl":null,"url":null,"abstract":"<div><p>The exploration of a suitable adsorbent for removal of toxic elements is a challenging task and in this context we have employed UiO-66 (Ce) based Metal Organic Frameworks (MOFs) synthesized by a room temperature method for the remediation of arsenic from aqueous solutions. The synthesized UiO-66 (Ce) and UiO-66 (Ce)-NH<sub>2</sub> MOFs were well characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), Thermogravimetry (TG), Brunauer–Emmett–Teller (B.E.T.), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Octahedral morphology was observed for UiO-66 (Ce) whereas the morphology of UiO-66 (Ce)-NH<sub>2</sub> synthesized by this method was non-uniform. Bare MOF exhibited higher surface area and higher thermal stability in contrast to the amine functionalized MOF. We have studied the arsenic adsorption on both these MOFs in varying pH conditions. The adsorption isotherm studies revealed that bare MOF is much superior for adsorption of arsenic with adsorption capacity of ∼308 mg/g whereas the adsorption capacity of amine functionalized MOF was mere 70 mg/g. Adsorption kinetic studies demonstrated that MOFs follow Pseudo Second Order (PSO) model and elucidated that the adsorption process is predominantly chemisorption in nature. UiO-66 (Ce) could be successively used multiple times without much penalty in the adsorption capacity and the thermodynamics of adsorption suggested it to be spontaneous and favorable. Finally, an overview of the probable mechanism of adsorption is discussed by employing different experimental techniques like XRD, FT-IR and XPS.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"379 ","pages":"Article 113299"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003214","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of a suitable adsorbent for removal of toxic elements is a challenging task and in this context we have employed UiO-66 (Ce) based Metal Organic Frameworks (MOFs) synthesized by a room temperature method for the remediation of arsenic from aqueous solutions. The synthesized UiO-66 (Ce) and UiO-66 (Ce)-NH2 MOFs were well characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), Thermogravimetry (TG), Brunauer–Emmett–Teller (B.E.T.), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Octahedral morphology was observed for UiO-66 (Ce) whereas the morphology of UiO-66 (Ce)-NH2 synthesized by this method was non-uniform. Bare MOF exhibited higher surface area and higher thermal stability in contrast to the amine functionalized MOF. We have studied the arsenic adsorption on both these MOFs in varying pH conditions. The adsorption isotherm studies revealed that bare MOF is much superior for adsorption of arsenic with adsorption capacity of ∼308 mg/g whereas the adsorption capacity of amine functionalized MOF was mere 70 mg/g. Adsorption kinetic studies demonstrated that MOFs follow Pseudo Second Order (PSO) model and elucidated that the adsorption process is predominantly chemisorption in nature. UiO-66 (Ce) could be successively used multiple times without much penalty in the adsorption capacity and the thermodynamics of adsorption suggested it to be spontaneous and favorable. Finally, an overview of the probable mechanism of adsorption is discussed by employing different experimental techniques like XRD, FT-IR and XPS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温合成用于从水溶液中吸附砷的 Ce 基 UiO-66 和 UiO-66-NH2 金属有机框架
探索去除有毒元素的合适吸附剂是一项具有挑战性的任务,在此背景下,我们采用室温法合成了基于 UiO-66 (Ce) 的金属有机框架 (MOF),用于修复水溶液中的砷。合成的 UiO-66 (Ce) 和 UiO-66 (Ce)-NH2 MOFs 通过 X 射线衍射 (XRD)、傅立叶变换红外 (FT-IR)、热重法 (TG)、布鲁诺-艾美特-泰勒 (B.E.T.)、扫描电子显微镜 (SEM) 和 X 射线光电子能谱 (XPS) 进行了表征。观察到 UiO-66 (Ce) 呈八面体形貌,而该方法合成的 UiO-66 (Ce)-NH2 的形貌不均匀。与胺功能化 MOF 相比,裸 MOF 具有更高的比表面积和热稳定性。我们研究了这两种 MOF 在不同 pH 值条件下对砷的吸附情况。吸附等温线研究表明,裸 MOF 对砷的吸附能力高达 308 毫克/克,而胺功能化 MOF 的吸附能力仅为 70 毫克/克。吸附动力学研究表明,MOFs 遵循伪二阶(PSO)模型,并阐明了吸附过程主要是化学吸附。UiO-66 (Ce) 可以连续多次使用,而不会对吸附能力造成太大影响,吸附热力学表明它是自发和有利的。最后,通过使用不同的实验技术,如 XRD、FT-IR 和 XPS,讨论了吸附的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
期刊最新文献
Editorial Board Effect of linker hybridization on the wetting of hydrophobic metal-organic frameworks Artificial intelligence -driven insights into bisphenol A removal using synthesized carbon nanotubes Catalytic COS formation on ion-exchanged LTA zeolites during adsorption Fabrication of LTA zeolite core and UiO-66 shell structures via surface zeta potential modulation and sequential seeded growth for zeolite/polymer composite membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1