Pub Date : 2024-11-26DOI: 10.1016/j.micromeso.2024.113433
Imad El Bojaddayni , Youssef El Ouardi , Mohammed Elkabous , Nafea Achalhi , Alharith Yousuf , Yasser Karzazi , Abdelkrim Ouammou , Sami Virolainen
A practical and cost-effective method was successfully developed for synthesizing high-performance zeolite LTA from bentonite clay by fine-tuning activation steps and crystallization parameters. The optimal synthesis conditions and crystallization mechanism were investigated. The synthesized zeolites were characterized using XRD, FTIR, and SEM-EDS techniques. The results highlight the significant influence of factors such as crystallization temperature, duration, and the effect of sodium hydroxide concentration on the formation of zeolites. Optimal conditions set at a crystallization temperature of 97 °C, duration of 24 h, and NaOH concentration of 4M yielded pure zeolite LTA, boasting high crystallinity levels. Achieving a peak crystallinity of 82 %. The obtained zeolite LTA showed an exceptional Cd (II) ion exchange capacity. A mechanism involving adsorption of Cd2⁺, Ni2⁺, Co2⁺, and Fe2⁺ ions in zeolite LTA at the α and β-cages has been proposed using dynamic simulation. This mechanism supports all experimental results, in particular for LTA- Cd2⁺, Cd2⁺ ions are predominantly distributed in both α and β-cages, with a denser distribution in the α-cages, indicating a strong preference for these sites due to their geometric and electronic environment. The resulted zeolite LTA demonstrated ability for successful Cd (II) removal, affirming its utility as an efficient material in environmental remediation industries.
{"title":"Dynamic simulation-driven analysis of cadmium, nickel, cobalt, and iron adsorption mechanisms in zeolite LTA synthesized from bentonite","authors":"Imad El Bojaddayni , Youssef El Ouardi , Mohammed Elkabous , Nafea Achalhi , Alharith Yousuf , Yasser Karzazi , Abdelkrim Ouammou , Sami Virolainen","doi":"10.1016/j.micromeso.2024.113433","DOIUrl":"10.1016/j.micromeso.2024.113433","url":null,"abstract":"<div><div>A practical and cost-effective method was successfully developed for synthesizing high-performance zeolite LTA from bentonite clay by fine-tuning activation steps and crystallization parameters. The optimal synthesis conditions and crystallization mechanism were investigated. The synthesized zeolites were characterized using XRD, FTIR, and SEM-EDS techniques. The results highlight the significant influence of factors such as crystallization temperature, duration, and the effect of sodium hydroxide concentration on the formation of zeolites. Optimal conditions set at a crystallization temperature of 97 °C, duration of 24 h, and NaOH concentration of 4M yielded pure zeolite LTA, boasting high crystallinity levels. Achieving a peak crystallinity of 82 %. The obtained zeolite LTA showed an exceptional Cd (II) ion exchange capacity. A mechanism involving adsorption of Cd<sup>2</sup>⁺, Ni<sup>2</sup>⁺, Co<sup>2</sup>⁺, and Fe<sup>2</sup>⁺ ions in zeolite LTA at the α and β-cages has been proposed using dynamic simulation. This mechanism supports all experimental results, in particular for LTA- Cd<sup>2</sup>⁺, Cd<sup>2</sup>⁺ ions are predominantly distributed in both α and β-cages, with a denser distribution in the α-cages, indicating a strong preference for these sites due to their geometric and electronic environment. The resulted zeolite LTA demonstrated ability for successful Cd (II) removal, affirming its utility as an efficient material in environmental remediation industries.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113433"},"PeriodicalIF":4.8,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.micromeso.2024.113432
Denis P. Morilov , Konstantin L. Timofeev , Aleksandra G. Golubovskaya , Olga A. Stonkus , Tamara S. Kharlamova
The present work is focused on a strategy to regulate the properties of monometallic Pd and bimetallic PdCu catalysts for selective 5-hydroxymethylfurfural (HMF) reduction via the interaction with the functional groups of the NH2-modified Zr-based metal-organic frameworks (Zr-MOFs). xPd100-xCu/UiO-66-NH2-X catalysts with different fractions of amino terephthalate linkers as well as Pd and Cu metals (x and 100-x, respectively) in bimetallic composition are prepared with impregnation reduction technique. The obtained samples are studied using a complex of methods, including XRD, low-temperature nitrogen adsorption, IR spectroscopy, and CO pulsed chemisorption. The effect of NH2 groups on the adsorption properties of the Zr-MOFs towards Pd and Cu precursors and on Pd and PdCu species formation in xPd100-xCu/UiO-66-NH2-X catalysts is considered. The formation of active particles at various stages of catalyst formation is studied in detail. 50 % fraction of NH2 linkers is found optimal for the formation of active and selective mono- and bimetallic CuPd catalysts, while 100 % fraction significantly reduces the activity of the samples due to the strong interaction of active Pd species with the support and does not allow the formation of bimetallic catalysts.
{"title":"xPd100-xCu/UiO-66-NH2 catalysts for selective 5-hydroxymethylfurfural reduction","authors":"Denis P. Morilov , Konstantin L. Timofeev , Aleksandra G. Golubovskaya , Olga A. Stonkus , Tamara S. Kharlamova","doi":"10.1016/j.micromeso.2024.113432","DOIUrl":"10.1016/j.micromeso.2024.113432","url":null,"abstract":"<div><div>The present work is focused on a strategy to regulate the properties of monometallic Pd and bimetallic PdCu catalysts for selective 5-hydroxymethylfurfural (HMF) reduction via the interaction with the functional groups of the NH<sub>2</sub>-modified Zr-based metal-organic frameworks (Zr-MOFs). xPd100-xCu/UiO-66-NH<sub>2</sub>-X catalysts with different fractions of amino terephthalate linkers as well as Pd and Cu metals (x and 100-x, respectively) in bimetallic composition are prepared with impregnation reduction technique. The obtained samples are studied using a complex of methods, including XRD, low-temperature nitrogen adsorption, IR spectroscopy, and CO pulsed chemisorption. The effect of NH<sub>2</sub> groups on the adsorption properties of the Zr-MOFs towards Pd and Cu precursors and on Pd and PdCu species formation in xPd100-xCu/UiO-66-NH<sub>2</sub>-X catalysts is considered. The formation of active particles at various stages of catalyst formation is studied in detail. 50 % fraction of NH<sub>2</sub> linkers is found optimal for the formation of active and selective mono- and bimetallic CuPd catalysts, while 100 % fraction significantly reduces the activity of the samples due to the strong interaction of active Pd species with the support and does not allow the formation of bimetallic catalysts.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113432"},"PeriodicalIF":4.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wastewater contaminated with dyes poses significant environmental and health hazards, including oxygen depletion and carcinogenesis. Photocatalytic technology offers a sustainable and efficient solution by harnessing abundant solar energy to drive chemical reactions, making it a cost-effective method for water treatment. Metal-Organic Frameworks (MOFs), known for their high surface area, porosity, and chemical tunability, are particularly promising materials for such applications. In this study, we developed a green synthesis method to repurpose polyethylene terephthalate (PET) bottles into terephthalic acid, which was then used to synthesize PET-MIL-101(Cr) (denoted as PM-101(Cr)). The synthesis process avoids the use of organic solvents such as HF or DMF to prevent secondary pollution. Further modification of PM-101(Cr) through nitration produced PET-NO2-MIL-101(Cr) (PO-101(Cr)), which was subsequently reduced to form amine-functionalized PET-NH2-MIL-101(Cr) (PH-101(Cr)). PH-101(Cr) demonstrated a dye removal efficiency of over 95 % within 4 h of blue light irradiation, surpassing the performance of PM-101(Cr). Additionally, after four catalytic cycles, PH-101(Cr) maintained a reduction efficiency above 95 % for 6 h, indicating its robust potential for effective dye treatment. In summary, PH-101(Cr) efficiently degrades methylene blue dye under blue LED light, achieving both waste recycling and environmental remediation for improved sustainability.
{"title":"Waste-to-resource strategy through green synthesis of PET-derived metal-organic frameworks for efficient photocatalytic dye degradation","authors":"Fang-yu Liang , Yi-Hao Chen , Hsiu-Wei Huang , Yen-Chang Chen , Po-Jung Huang","doi":"10.1016/j.micromeso.2024.113431","DOIUrl":"10.1016/j.micromeso.2024.113431","url":null,"abstract":"<div><div>Wastewater contaminated with dyes poses significant environmental and health hazards, including oxygen depletion and carcinogenesis. Photocatalytic technology offers a sustainable and efficient solution by harnessing abundant solar energy to drive chemical reactions, making it a cost-effective method for water treatment. Metal-Organic Frameworks (MOFs), known for their high surface area, porosity, and chemical tunability, are particularly promising materials for such applications. In this study, we developed a green synthesis method to repurpose polyethylene terephthalate (PET) bottles into terephthalic acid, which was then used to synthesize PET-MIL-101(Cr) (denoted as PM-101(Cr)). The synthesis process avoids the use of organic solvents such as HF or DMF to prevent secondary pollution. Further modification of PM-101(Cr) through nitration produced PET-NO<sub>2</sub>-MIL-101(Cr) (PO-101(Cr)), which was subsequently reduced to form amine-functionalized PET-NH<sub>2</sub>-MIL-101(Cr) (PH-101(Cr)). PH-101(Cr) demonstrated a dye removal efficiency of over 95 % within 4 h of blue light irradiation, surpassing the performance of PM-101(Cr). Additionally, after four catalytic cycles, PH-101(Cr) maintained a reduction efficiency above 95 % for 6 h, indicating its robust potential for effective dye treatment. In summary, PH-101(Cr) efficiently degrades methylene blue dye under blue LED light, achieving both waste recycling and environmental remediation for improved sustainability.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113431"},"PeriodicalIF":4.8,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.micromeso.2024.113430
Yang Zhou , Zhenzhu xia , Frank Peprah Addai , Jinping Chen , Chengxiang Feng , Zongjian Zhen , Juan Han , Feng Lin , Zhirong Wang , Yun Wang
Most pristine metal organic frameworks (MOFs) are inherently microporous. To introduce desired porosity for easy enzyme infiltration and immobilization, polystyrene spheres was used as sacrificial template to design hierarchical ordered micro-mesoporous truncated single-crystalline ZIF-8 (SOM-ZIF-8). The surface area and pore diameter of the SOM-ZIF-8 were 821 m2/g and 7.09 nm which changed to 669 m2/g and 4.98 nm respectively, after lipase immobilization, suggesting the pores and surface of the SOM-ZIF-8 served as binding sites for the enzyme, and could reach a loading capacity of 134 mg/g after 24 h. The optimal conditions for achieving maximum lipase activity for free LipaseELP, ZIF-8@LipaseELP and SOM-ZIF-8@LipaseELP were pH 7.8 at 45 °C, and maintained 33.67 %, 45.6 % and 57.78 % residual activity after incubation at 80 °C for 2 h. The specific activity towards tributyrin and p-nitrophenyl acetate were observed to be SOM-ZIF-8@LipaseELP (0.25 and 45.85 U/mg) compared to ZIF-8@LipaseELP (0.211 and 43.62 U/mg) and LipaseELP (0.179 and 41.09 U/mg) respectively. The SOM-ZIF-8@LipaseELP could further be recovered and reused for 9 rounds while maintaining 73.8 % of its original activity. This study demonstrates that introducing mesoporous structures into ZIF-8 could improve its binding enzyme property for enhanced hydrolytic function.
{"title":"Hierarchically ordered truncated single crystal mesoporous ZIF-8 as a solid platform for lipase immobilization","authors":"Yang Zhou , Zhenzhu xia , Frank Peprah Addai , Jinping Chen , Chengxiang Feng , Zongjian Zhen , Juan Han , Feng Lin , Zhirong Wang , Yun Wang","doi":"10.1016/j.micromeso.2024.113430","DOIUrl":"10.1016/j.micromeso.2024.113430","url":null,"abstract":"<div><div>Most pristine metal organic frameworks (MOFs) are inherently microporous. To introduce desired porosity for easy enzyme infiltration and immobilization, polystyrene spheres was used as sacrificial template to design hierarchical ordered micro-mesoporous truncated single-crystalline ZIF-8 (SOM-ZIF-8). The surface area and pore diameter of the SOM-ZIF-8 were 821 m<sup>2</sup>/g and 7.09 nm which changed to 669 m<sup>2</sup>/g and 4.98 nm respectively, after lipase immobilization, suggesting the pores and surface of the SOM-ZIF-8 served as binding sites for the enzyme, and could reach a loading capacity of 134 mg/g after 24 h. The optimal conditions for achieving maximum lipase activity for free LipaseELP, ZIF-8@LipaseELP and SOM-ZIF-8@LipaseELP were pH 7.8 at 45 °C, and maintained 33.67 %, 45.6 % and 57.78 % residual activity after incubation at 80 °C for 2 h. The specific activity towards tributyrin and p-nitrophenyl acetate were observed to be SOM-ZIF-8@LipaseELP (0.25 and 45.85 U/mg) compared to ZIF-8@LipaseELP (0.211 and 43.62 U/mg) and LipaseELP (0.179 and 41.09 U/mg) respectively. The SOM-ZIF-8@LipaseELP could further be recovered and reused for 9 rounds while maintaining 73.8 % of its original activity. This study demonstrates that introducing mesoporous structures into ZIF-8 could improve its binding enzyme property for enhanced hydrolytic function.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113430"},"PeriodicalIF":4.8,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.micromeso.2024.113428
Daniel D. Athayde , Giovana Magalhães dos Santos , Anna Carolina Britto de Faria , Camila de Lima Ribeiro , Carlos Martins Aiube , Daniel A.A. Ladislau , Edson Paulo da Silva , Luiz Fernando de Sousa Lima , Rodrigo Nunes de Souza , Saulo Lucas Pereira da Silva , Nelcy D.S. Mohallem , Alysson Martins Almeida Silva
This study investigates the influence of synthesis time (1–4 days) and synthesis route for the fast production of SSZ-13 zeolites via the conventional hydrothermal method for CO2 adsorption. Two synthesis routes were examined using different Si precursors: tetraethyorthosilicate (Route T) and silica (Route L). The samples were characterized by XRD, FTIR, SEM, 29Si and 27Al MAS-NMR, and gas sorption, the results were correlated to CO2 adsorption kinetics. Route T produced fully crystalline SSZ-13 zeolite within 1 day with high yield, resulting in ultramicroporous materials through particle-mediate crystallization, transitioning from coarse spherical particles with high specific surface area (750 m2 g−1) and the highest equilibrium CO2 adsorption capacity of 81.08 mg g−1, to perfectly cubic structures for longer synthesis with decreased specific surface area (610 m2 g−1) and porosity. A disorder-to-order transition for synthesis longer than 3 days, along with the elimination of the interspaces internal, significantly decreased CO2 adsorption capacity (63.03 mg g−1). Meanwhile, SSZ-13 zeolites by Route L produced ultramicroporous crystalline particles only after 2 days, featuring intricate, layered structures formed by stacked sheets, indicating layer-by-layer mechanism. Longer synthesis times further increased particle complexity, reaching specific surface area of 858 m2 g−1 for the 4-day synthesis, along with improved CO2 adsorption capacity. However, the CO2 adsorption capacity for highly crystalline SSZ-13 samples obtained by Route L varied within 68.72–80.39 mg g−1, suggesting that structural properties also influenced CO2 adsorption performance. These findings demonstrate that conventional hydrothermal synthesis can rapidly produce SSZ-13 adsorbents, allowing fine-tuning material properties and CO2 adsorption capacity by selecting the appropriate synthesis route.
{"title":"Investigation of the reaction time and hydrothermal synthesis route on the SSZ-13 zeolite particle crystallization and CO2 adsorption","authors":"Daniel D. Athayde , Giovana Magalhães dos Santos , Anna Carolina Britto de Faria , Camila de Lima Ribeiro , Carlos Martins Aiube , Daniel A.A. Ladislau , Edson Paulo da Silva , Luiz Fernando de Sousa Lima , Rodrigo Nunes de Souza , Saulo Lucas Pereira da Silva , Nelcy D.S. Mohallem , Alysson Martins Almeida Silva","doi":"10.1016/j.micromeso.2024.113428","DOIUrl":"10.1016/j.micromeso.2024.113428","url":null,"abstract":"<div><div>This study investigates the influence of synthesis time (1–4 days) and synthesis route for the fast production of SSZ-13 zeolites via the conventional hydrothermal method for CO<sub>2</sub> adsorption. Two synthesis routes were examined using different Si precursors: tetraethyorthosilicate (Route T) and silica (Route L). The samples were characterized by XRD, FTIR, SEM, <sup>29</sup>Si and <sup>27</sup>Al MAS-NMR, and gas sorption, the results were correlated to CO<sub>2</sub> adsorption kinetics. Route T produced fully crystalline SSZ-13 zeolite within 1 day with high yield, resulting in ultramicroporous materials through particle-mediate crystallization, transitioning from coarse spherical particles with high specific surface area (750 m<sup>2</sup> g<sup>−1</sup>) and the highest equilibrium CO<sub>2</sub> adsorption capacity of 81.08 mg g<sup>−1</sup>, to perfectly cubic structures for longer synthesis with decreased specific surface area (610 m<sup>2</sup> g<sup>−1</sup>) and porosity. A disorder-to-order transition for synthesis longer than 3 days, along with the elimination of the interspaces internal, significantly decreased CO<sub>2</sub> adsorption capacity (63.03 mg g<sup>−1</sup>). Meanwhile, SSZ-13 zeolites by Route L produced ultramicroporous crystalline particles only after 2 days, featuring intricate, layered structures formed by stacked sheets, indicating layer-by-layer mechanism. Longer synthesis times further increased particle complexity, reaching specific surface area of 858 m<sup>2</sup> g<sup>−1</sup> for the 4-day synthesis, along with improved CO<sub>2</sub> adsorption capacity. However, the CO<sub>2</sub> adsorption capacity for highly crystalline SSZ-13 samples obtained by Route L varied within 68.72–80.39 mg g<sup>−1</sup>, suggesting that structural properties also influenced CO<sub>2</sub> adsorption performance. These findings demonstrate that conventional hydrothermal synthesis can rapidly produce SSZ-13 adsorbents, allowing fine-tuning material properties and CO<sub>2</sub> adsorption capacity by selecting the appropriate synthesis route.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113428"},"PeriodicalIF":4.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.micromeso.2024.113429
Boji Wang , Yao Zhang , Sarayute Chansai , Amal Nadri , Xiaoxia Ou , Qiang Zhang , Shaojun Xu , Yilai Jiao , Xiaolei Fan
An intergrowth zeolite combining the SSZ-13 and ZSM-5 structure was synthesized using a dual-template method for application in selective catalytic reduction (SCR) of NOx with NH3. The intergrown structure was confirmed through detailed characterization. Compared to pure-phase zeolites, the intergrowth exhibited up to a 14 % enhancement in NO conversion at temperatures above 220 °C after hydrothermal aging (at 750 °C with 10 % H2O for 16 h). Comprehensive characterization revealed that intergrowth zeolite promoted the transformation of hydrothermally less stable Cu species (ZCuOH, located at 8 MR) to hydrothermally more stable Cu species (Z2Cu, located at 6 MR) during hydrothermal ageing. Additionally, copper leaching is hindered due to the well-preserved structural integrity of the intergrowth zeolite, with only a slight decrease in crystallinity (∼1.6 %). These findings suggest that intergrowth zeolites are promising candidates for mitigating NOx emissions in stationary sources under harsh hydrothermal conditions, such as that found in thermal power generation and steel manufacturing.
{"title":"Selective catalytic reduction (SCR) of NOx with NH3 over the SSZ-13/ZSM-5 intergrowth zeolite","authors":"Boji Wang , Yao Zhang , Sarayute Chansai , Amal Nadri , Xiaoxia Ou , Qiang Zhang , Shaojun Xu , Yilai Jiao , Xiaolei Fan","doi":"10.1016/j.micromeso.2024.113429","DOIUrl":"10.1016/j.micromeso.2024.113429","url":null,"abstract":"<div><div>An intergrowth zeolite combining the SSZ-13 and ZSM-5 structure was synthesized using a dual-template method for application in selective catalytic reduction (SCR) of NO<sub>x</sub> with NH<sub>3</sub>. The intergrown structure was confirmed through detailed characterization. Compared to pure-phase zeolites, the intergrowth exhibited up to a 14 % enhancement in NO conversion at temperatures above 220 °C after hydrothermal aging (at 750 °C with 10 % H<sub>2</sub>O for 16 h). Comprehensive characterization revealed that intergrowth zeolite promoted the transformation of hydrothermally less stable Cu species (ZCuOH, located at 8 MR) to hydrothermally more stable Cu species (Z<sub>2</sub>Cu, located at 6 MR) during hydrothermal ageing. Additionally, copper leaching is hindered due to the well-preserved structural integrity of the intergrowth zeolite, with only a slight decrease in crystallinity (∼1.6 %). These findings suggest that intergrowth zeolites are promising candidates for mitigating NO<sub>x</sub> emissions in stationary sources under harsh hydrothermal conditions, such as that found in thermal power generation and steel manufacturing.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113429"},"PeriodicalIF":4.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A facile urea-assisted hydrothermal method was developed for synthesizing Co(Ca)-silicate nanosheets@13X (CoCa-13X) as catalyst materials for peroxymonosulfate activation. Urea gradually dissolves 13X to form the silicate anion, and anchors Co2+ ions to the surface of 13X, while introducing Ca2+ ions to form in situ Co/Ca-silicates. The degradation efficiency and reusability of the compound catalyst for metronidazole (MNZ) were investigated. The results demonstrated that at an initial concentration of 25 mg/L, the CoCa-13X-PMS system exhibited excellent catalytic degradation performance towards MNZ, and the degradation rate reached 99.52 % within 5 min. Furthermore, the CoCa-13X-PMS system maintained high catalytic activity against various organic pollutants and even at high concentrations of pollutants (up to 30 mg/L). Free radical quenching experiments revealed simultaneous participation of SO4•– and 1O2 in the oxidation process simultaneously. Additionally, the degradation mechanism and pathway of MNZ were studied and proposed, along with evaluation of biotoxicity associated with its degradation intermediates. This method offers a novel strategy for synthesizing silica zeolite-based cobalt catalysts with exceptional PMS activity for removal of organic pollutants.
{"title":"Facile coating Co/Ca-silicate on 13X for enhanced degradation of metronidazole via peroxymonosulfate activation: Catalytic performance and toxicity evolution","authors":"Qing Sun, Jiao Yan, Xiaofang Hu, Jiale Yu, Jian Zhang, Jiawei Sheng","doi":"10.1016/j.micromeso.2024.113424","DOIUrl":"10.1016/j.micromeso.2024.113424","url":null,"abstract":"<div><div>A facile urea-assisted hydrothermal method was developed for synthesizing Co(Ca)-silicate nanosheets@13X (CoCa-13X) as catalyst materials for peroxymonosulfate activation. Urea gradually dissolves 13X to form the silicate anion, and anchors Co<sup>2+</sup> ions to the surface of 13X, while introducing Ca<sup>2+</sup> ions to form in situ Co/Ca-silicates. The degradation efficiency and reusability of the compound catalyst for metronidazole (MNZ) were investigated. The results demonstrated that at an initial concentration of 25 mg/L, the CoCa-13X-PMS system exhibited excellent catalytic degradation performance towards MNZ, and the degradation rate reached 99.52 % within 5 min. Furthermore, the CoCa-13X-PMS system maintained high catalytic activity against various organic pollutants and even at high concentrations of pollutants (up to 30 mg/L). Free radical quenching experiments revealed simultaneous participation of SO<sub>4</sub><sup>•<strong>–</strong></sup> and <sup>1</sup>O<sub>2</sub> in the oxidation process simultaneously. Additionally, the degradation mechanism and pathway of MNZ were studied and proposed, along with evaluation of biotoxicity associated with its degradation intermediates. This method offers a novel strategy for synthesizing silica zeolite-based cobalt catalysts with exceptional PMS activity for removal of organic pollutants.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"383 ","pages":"Article 113424"},"PeriodicalIF":4.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This novel research incorporates statistical physics methodologies to microscopically scrutinize and interpret the retention dynamics of Pefloxacin from aqueous solutions via Halloysite Nanotubes (HNTs) for water detoxification. Measurement points were matched under the scope of four distinct statistical isotherm frameworks: the single-energy monolayer, dual-energy monolayer, tri-energetic monolayer, and dual-energy bilayer. An error quantification approach, incorporating R2, reduced Chi-Square, RSS, and R2adj, identified the dual-energy bilayer as the most suitable model. Rooted in the more realistic scenario, stereographic, energetic and thermodynamic parameters in addition to the pore size distribution (PSD) and adhesion energy distribution (AED) functions have been successfully developed and applied to examine the intricate details of the docking mechanisms. Stereographic examination unveiled that the linking cavities preferentially capture a majority of the attached species with n > 1 at specific temperatures indicating a specific-anchorage mechanism with substantial aggregation. Statistical thermodynamic exploration evidenced that the retention operation in this study is entropy-driven, and endothermic. Combining temperature and concentration impacts gives entropy a more complex behavior. Finally, the PSD and AED assessments revealed the mesoporous geometric size and energetic surface heterogeneity confirming the endothermic nature and physisorption-dominated mechanism (<25 kJ/mol) of the Pefloxacin/HNTs area-anchoring.
{"title":"Exploring statistical physics principles for superior Pefloxacin extraction from water via halloysite nanotubes: Stereographic and topographic evaluation","authors":"Amin Naifar , Kods Oueslati , Fatma Aouaini , Beriham Basha , Nadia Ayari , Abdelmottaleb Ben Lamine","doi":"10.1016/j.micromeso.2024.113427","DOIUrl":"10.1016/j.micromeso.2024.113427","url":null,"abstract":"<div><div>This novel research incorporates statistical physics methodologies to microscopically scrutinize and interpret the retention dynamics of Pefloxacin from aqueous solutions via Halloysite Nanotubes (HNTs) for water detoxification. Measurement points were matched under the scope of four distinct statistical isotherm frameworks: the single-energy monolayer, dual-energy monolayer, tri-energetic monolayer, and dual-energy bilayer. An error quantification approach, incorporating R<sup>2</sup>, reduced Chi-Square, RSS, and R<sup>2</sup><sub>adj</sub>, identified the dual-energy bilayer as the most suitable model. Rooted in the more realistic scenario, stereographic, energetic and thermodynamic parameters in addition to the pore size distribution (PSD) and adhesion energy distribution (AED) functions have been successfully developed and applied to examine the intricate details of the docking mechanisms. Stereographic examination unveiled that the linking cavities preferentially capture a majority of the attached species with n > 1 at specific temperatures indicating a specific-anchorage mechanism with substantial aggregation. Statistical thermodynamic exploration evidenced that the retention operation in this study is entropy-driven, and endothermic. Combining temperature and concentration impacts gives entropy a more complex behavior. Finally, the PSD and AED assessments revealed the mesoporous geometric size and energetic surface heterogeneity confirming the endothermic nature and physisorption-dominated mechanism (<25 kJ/mol) of the Pefloxacin/HNTs area-anchoring.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"383 ","pages":"Article 113427"},"PeriodicalIF":4.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.micromeso.2024.113426
Zaixing Yan, Wan Wang, Fangfang Zhao, Fei Liu, Tianxiang Zhao
The development of versatile, sustainable, and efficient N-doped porous carbon materials for the removal of trace contaminants has attracted considerable interest. Traditional methods for preparing porous carbon materials often involve the use of potent and hazardous activating agents such as KOH, H3PO4, and ZnCl2, which not only restrict the choice of production equipment but also pose environmental hazards. In this study, we introduce a self-activating method to synthesize N-doped porous carbon materials specifically designed for the removal of hexavalent chromium [Cr(VI)]. This approach involves the direct carbonization of EDTA dipotassium salt at different temperatures under a N2 atmosphere without any activators. The influence of adsorbent dosages, pH, temperature, initial concentration of Cr(VI) ions, and competing ions on the adsorption behavior of Cr(VI) was systematically examined. The findings reveal that the optimal conditions for adsorption are a pH of 2 and an adsorbent dosage of 1.0 g L−1. Furthermore, Cr(VI) rapid adsorption onto N-doped porous carbon follows Freundlich isotherm and pseudo-second-order kinetic models. Notably, adsorbent KNC-700 exhibits an exceptional specific surface area of 2124.6 m2 g−1 and a well-defined pore structure. It shows maximum adsorption capacity for Cr(VI) of 270.3 mg g−1 at 328 K with an equilibrium time of 20 min. Further mechanistic investigations suggest that efficient uptake of Cr(VI) primarily occurs through physico chemical adsorption involving electrostatic interactions and reduction reactions. This study provides novel insights into the preparation of porous carbon materials and their potential applications in addressing Cr(VI) pollution.
开发用于去除痕量污染物的多功能、可持续和高效的掺 N 多孔碳材料引起了人们的极大兴趣。传统的多孔碳材料制备方法通常需要使用强效且有害的活化剂,如 KOH、H3PO4 和 ZnCl2,这不仅限制了生产设备的选择,还会对环境造成危害。在本研究中,我们介绍了一种自活化方法,用于合成专门用于去除六价铬[Cr(VI)]的掺杂 N 的多孔碳材料。这种方法包括在不同温度下,在不使用任何活化剂的情况下,在 N2 大气中对 EDTA 二钾盐进行直接碳化。系统研究了吸附剂用量、pH 值、温度、六价铬离子的初始浓度以及竞争离子对六价铬吸附行为的影响。研究结果表明,最佳的吸附条件是 pH 值为 2,吸附剂用量为 1.0 g L-1。此外,Cr(VI) 在掺 N 多孔碳上的快速吸附遵循 Freundlich 等温线和伪二阶动力学模型。值得注意的是,吸附剂 KNC-700 的比表面积高达 2124.6 m2 g-1,孔隙结构非常清晰。它在 328 K 时对 Cr(VI) 的最大吸附容量为 270.3 mg g-1,平衡时间为 20 分钟。进一步的机理研究表明,Cr(VI)的有效吸附主要是通过物理化学吸附实现的,其中涉及静电相互作用和还原反应。这项研究为多孔碳材料的制备及其在解决六价铬污染方面的潜在应用提供了新的见解。
{"title":"Direct synthesis of N-doped porous carbon materials from EDTA dipotassium salt for the rapid adsorption of hexavalent chromium from aqueous solutions","authors":"Zaixing Yan, Wan Wang, Fangfang Zhao, Fei Liu, Tianxiang Zhao","doi":"10.1016/j.micromeso.2024.113426","DOIUrl":"10.1016/j.micromeso.2024.113426","url":null,"abstract":"<div><div>The development of versatile, sustainable, and efficient N-doped porous carbon materials for the removal of trace contaminants has attracted considerable interest. Traditional methods for preparing porous carbon materials often involve the use of potent and hazardous activating agents such as KOH, H<sub>3</sub>PO<sub>4</sub>, and ZnCl<sub>2</sub>, which not only restrict the choice of production equipment but also pose environmental hazards. In this study, we introduce a self-activating method to synthesize N-doped porous carbon materials specifically designed for the removal of hexavalent chromium [Cr(VI)]. This approach involves the direct carbonization of EDTA dipotassium salt at different temperatures under a N<sub>2</sub> atmosphere without any activators. The influence of adsorbent dosages, pH, temperature, initial concentration of Cr(VI) ions, and competing ions on the adsorption behavior of Cr(VI) was systematically examined. The findings reveal that the optimal conditions for adsorption are a pH of 2 and an adsorbent dosage of 1.0 g L<sup>−1</sup>. Furthermore, Cr(VI) rapid adsorption onto N-doped porous carbon follows Freundlich isotherm and pseudo-second-order kinetic models. Notably, adsorbent KNC-700 exhibits an exceptional specific surface area of 2124.6 m<sup>2</sup> g<sup>−1</sup> and a well-defined pore structure. It shows maximum adsorption capacity for Cr(VI) of 270.3 mg g<sup>−1</sup> at 328 K with an equilibrium time of 20 min. Further mechanistic investigations suggest that efficient uptake of Cr(VI) primarily occurs through physico chemical adsorption involving electrostatic interactions and reduction reactions. This study provides novel insights into the preparation of porous carbon materials and their potential applications in addressing Cr(VI) pollution.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"383 ","pages":"Article 113426"},"PeriodicalIF":4.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.micromeso.2024.113422
Hang Xu , Ningxiang Lan , Yan Hu , Yuchun Xi , Jinzhi Hu , Chaowei Wen , Wanpeng Li , Chuanqiang Yin , Xiaomin Li , Lang Zhou
Nanometer-thick two-dimensional (2D) materials are becoming ideal fillers for designing mixed matrix membranes (MMMs) with high gas permeability and selectivity due to their unique structures. ZIF-67@BNNS composite fillers were prepared by combining boron nitride nanosheets (BNNS), a thermally stable and chemically inert two-dimensional material, with the metal-organic framework ZIF-67. By incorporating these materials into polyetherimide (PEI), MMMs with efficient hydrogen (H2) separation performance have been developed. The -NH2 groups on the BNNS surface provide a growth site for cobalt (Co) ions, facilitating the construction of a two-dimensional continuous channel by growing a ZIF-67 layer in situ on the BNNS surface. The inherent micropores of ZIF-67 create internal channels for gas transport within the composite packing, increasing gas permeability. The interlaced BNNS layer provides an external channel for gas transport, increasing resistance and contributing to improved gas selectivity. At a low loading of 1 wt%, the PEI/[email protected] MMMs exhibited a 199 % increase in H2 permeability and 87 % improvement in H2/CO2 selectivity compared to pure PEI membranes. In addition, these MMMs exhibit strong thermal stability and mechanical properties, making them promising for H2 separation applications.
{"title":"Metal-organic framework/ 2D boron nitride nanosheets composite fillers in mixed matrix membranes for H2 /CO2 separation","authors":"Hang Xu , Ningxiang Lan , Yan Hu , Yuchun Xi , Jinzhi Hu , Chaowei Wen , Wanpeng Li , Chuanqiang Yin , Xiaomin Li , Lang Zhou","doi":"10.1016/j.micromeso.2024.113422","DOIUrl":"10.1016/j.micromeso.2024.113422","url":null,"abstract":"<div><div>Nanometer-thick two-dimensional (2D) materials are becoming ideal fillers for designing mixed matrix membranes (MMMs) with high gas permeability and selectivity due to their unique structures. ZIF-67@BNNS composite fillers were prepared by combining boron nitride nanosheets (BNNS), a thermally stable and chemically inert two-dimensional material, with the metal-organic framework ZIF-67. By incorporating these materials into polyetherimide (PEI), MMMs with efficient hydrogen (H<sub>2</sub>) separation performance have been developed. The -NH<sub>2</sub> groups on the BNNS surface provide a growth site for cobalt (Co) ions, facilitating the construction of a two-dimensional continuous channel by growing a ZIF-67 layer in situ on the BNNS surface. The inherent micropores of ZIF-67 create internal channels for gas transport within the composite packing, increasing gas permeability. The interlaced BNNS layer provides an external channel for gas transport, increasing resistance and contributing to improved gas selectivity. At a low loading of 1 wt%, the PEI/[email protected] MMMs exhibited a 199 % increase in H<sub>2</sub> permeability and 87 % improvement in H<sub>2</sub>/CO<sub>2</sub> selectivity compared to pure PEI membranes. In addition, these MMMs exhibit strong thermal stability and mechanical properties, making them promising for H<sub>2</sub> separation applications.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113422"},"PeriodicalIF":4.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}