Water resource forecasting with machine learning and deep learning: A scientometric analysis

Chanjuan Liu , Jing Xu , Xi’an Li , Zhongyao Yu , Jinran Wu
{"title":"Water resource forecasting with machine learning and deep learning: A scientometric analysis","authors":"Chanjuan Liu ,&nbsp;Jing Xu ,&nbsp;Xi’an Li ,&nbsp;Zhongyao Yu ,&nbsp;Jinran Wu","doi":"10.1016/j.aiig.2024.100084","DOIUrl":null,"url":null,"abstract":"<div><p>Water prediction plays a crucial role in modern-day water resource management, encompassing both hydrological patterns and demand forecasts. To gain insights into its current focus, status, and emerging themes, this study analyzed 876 articles published between 2015 and 2022, retrieved from the Web of Science database. Leveraging CiteSpace visualization software, bibliometric techniques, and literature review methodologies, the investigation identified essential literature related to water prediction using machine learning and deep learning approaches. Through a comprehensive analysis, the study identified significant countries, institutions, authors, journals, and keywords in this field. By exploring this data, the research mapped out prevailing trends and cutting-edge areas, providing valuable insights for researchers and practitioners involved in water prediction through machine learning and deep learning. The study aims to guide future inquiries by highlighting key research domains and emerging areas of interest.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"5 ","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654412400025X/pdfft?md5=8bb63629925bdc6599eb399ca1cbfe94&pid=1-s2.0-S266654412400025X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654412400025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water prediction plays a crucial role in modern-day water resource management, encompassing both hydrological patterns and demand forecasts. To gain insights into its current focus, status, and emerging themes, this study analyzed 876 articles published between 2015 and 2022, retrieved from the Web of Science database. Leveraging CiteSpace visualization software, bibliometric techniques, and literature review methodologies, the investigation identified essential literature related to water prediction using machine learning and deep learning approaches. Through a comprehensive analysis, the study identified significant countries, institutions, authors, journals, and keywords in this field. By exploring this data, the research mapped out prevailing trends and cutting-edge areas, providing valuable insights for researchers and practitioners involved in water prediction through machine learning and deep learning. The study aims to guide future inquiries by highlighting key research domains and emerging areas of interest.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习和深度学习进行水资源预测:科学计量分析
水资源预测在现代水资源管理中发挥着至关重要的作用,包括水文模式和需求预测。为了深入了解其当前的重点、现状和新兴主题,本研究分析了从科学网数据库中检索到的 2015 年至 2022 年间发表的 876 篇文章。利用 CiteSpace 可视化软件、文献计量学技术和文献综述方法,该研究利用机器学习和深度学习方法确定了与水预测相关的重要文献。通过综合分析,研究确定了该领域的重要国家、机构、作者、期刊和关键词。通过探索这些数据,研究绘制出了当前趋势和前沿领域,为通过机器学习和深度学习进行水资源预测的研究人员和从业人员提供了宝贵的见解。本研究旨在通过突出关键研究领域和新兴关注领域来指导未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1