Wave-Convection Interactions Amplify Convective Parameterization Biases in the South Pacific Convergence Zone

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-08-16 DOI:10.1029/2024MS004334
Yuanrui Chen, Wenchao Chu, Jonathon S. Wright, Yanluan Lin
{"title":"Wave-Convection Interactions Amplify Convective Parameterization Biases in the South Pacific Convergence Zone","authors":"Yuanrui Chen,&nbsp;Wenchao Chu,&nbsp;Jonathon S. Wright,&nbsp;Yanluan Lin","doi":"10.1029/2024MS004334","DOIUrl":null,"url":null,"abstract":"<p>Climate models have long-standing difficulties simulating the South Pacific Convergence Zone (SPCZ) and its variability. For example, the default Zhang-McFarlane (ZM) convection scheme in the Community Atmosphere Model version 5 (CAM5) produces too much light precipitation and too little heavy precipitation in the SPCZ, with this bias toward light precipitation even more pronounced in the SPCZ than in the tropics as a whole. Here, we show that implementing a recently developed convection scheme in the CAM5 yields significant improvements in the simulated SPCZ during austral summer and discuss the reasons behind these improvements. In addition to intensifying both mean rainfall and its variability in the SPCZ, the new scheme produces a larger heavy rainfall fraction that is more consistent with observations and state-of-the-art reanalyses. This shift toward heavier, more variable rainfall increases both the magnitude and altitude of diabatic heating associated with convective precipitation, intensifying lower tropospheric convergence and increasing the influence of convection on the upper-level circulation. Increased diabatic production of potential vorticity in the upper troposphere intensifies the distortion effect exerted by convection on transient Rossby waves that pass through the SPCZ. Weaker distortion effects in simulations using the ZM scheme allow waves to propagate continuously through the region rather than dissipating locally, further reducing updrafts and weakening convection in the SPCZ. Our results outline a dynamical framework for evaluating model representations of tropical–extratropical interactions within the SPCZ and clarify why convective parameterizations that produce “top-heavy” profiles of deep convective heating better represent the SPCZ and its variability.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004334","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004334","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate models have long-standing difficulties simulating the South Pacific Convergence Zone (SPCZ) and its variability. For example, the default Zhang-McFarlane (ZM) convection scheme in the Community Atmosphere Model version 5 (CAM5) produces too much light precipitation and too little heavy precipitation in the SPCZ, with this bias toward light precipitation even more pronounced in the SPCZ than in the tropics as a whole. Here, we show that implementing a recently developed convection scheme in the CAM5 yields significant improvements in the simulated SPCZ during austral summer and discuss the reasons behind these improvements. In addition to intensifying both mean rainfall and its variability in the SPCZ, the new scheme produces a larger heavy rainfall fraction that is more consistent with observations and state-of-the-art reanalyses. This shift toward heavier, more variable rainfall increases both the magnitude and altitude of diabatic heating associated with convective precipitation, intensifying lower tropospheric convergence and increasing the influence of convection on the upper-level circulation. Increased diabatic production of potential vorticity in the upper troposphere intensifies the distortion effect exerted by convection on transient Rossby waves that pass through the SPCZ. Weaker distortion effects in simulations using the ZM scheme allow waves to propagate continuously through the region rather than dissipating locally, further reducing updrafts and weakening convection in the SPCZ. Our results outline a dynamical framework for evaluating model representations of tropical–extratropical interactions within the SPCZ and clarify why convective parameterizations that produce “top-heavy” profiles of deep convective heating better represent the SPCZ and its variability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波浪与对流的相互作用放大了南太平洋辐合带的对流参数化偏差
气候模式在模拟南太平洋辐合带(SPCZ)及其变化方面长期存在困难。例如,共同体大气模式第 5 版(CAM5)中默认的张-麦克法兰(ZM)对流方案在南太平洋辐合带产生了过多的轻降水和过少的强降水,这种偏向轻降水的情况在南太平洋辐合带甚至比在整个热带地区更为明显。在这里,我们展示了在 CAM5 中实施最近开发的对流方案后,澳大利夏季的 SPCZ 模拟结果有了显著改善,并讨论了这些改善背后的原因。新方案除了增强了 SPCZ 的平均降雨量及其变化之外,还产生了更大的强降雨分量,这与观测结果和最新的再分析结果更加一致。这种向更强、更多变降雨的转变增加了与对流降水相关的二重加热的幅度和高度,加强了对流层低层的辐合,增加了对流对高层环流的影响。对流层上层潜在涡度的二重性增加,加剧了对流对穿过 SPCZ 的瞬态罗斯比波的扭曲效应。在使用 ZM 方案的模拟中,扭曲效应较弱,使得波在该区域持续传播,而不是在局部消散,从而进一步减少了上升气流,削弱了 SPCZ 的对流。我们的研究结果为评估 SPCZ 内热带-外热带相互作用的模式表述勾勒出了一个动力学框架,并阐明了为什么产生 "头重脚轻 "的深层对流加热剖面的对流参数化能更好地表述 SPCZ 及其变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
A Lake Biogeochemistry Model for Global Methane Emissions: Model Development, Site-Level Validation, and Global Applicability Evaluation of Autoconversion Representation in E3SMv2 Using an Ensemble of Large-Eddy Simulations of Low-Level Warm Clouds Description and Evaluation of the CNRM-Cerfacs Climate Prediction System (C3PS) Generative Diffusion for Regional Surrogate Models From Sea-Ice Simulations Contributions of Irrigation Modeling, Soil Moisture and Snow Data Assimilation to High-Resolution Water Budget Estimates Over the Po Basin: Progress Towards Digital Replicas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1