{"title":"The Earth atmosphere-like bulk nitrogen isotope composition obtained by stepwise combustion analyses of Ryugu return samples","authors":"Ko Hashizume, Akizumi Ishida, Ayano Chiba, Ryuji Okazaki, Kasumi Yogata, Toru Yada, Fumio Kitajima, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Yoshinori Takano, Kanako Sakamoto, Shogo Tachibana, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Fuyuto Terui, Satoshi Tanaka, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda, Michael W. Broadley, Henner Busemann, the Hayabusa2 Initial Analysis Volatile Team","doi":"10.1111/maps.14175","DOIUrl":null,"url":null,"abstract":"<p>The nitrogen isotope compositions of two samples returned from the asteroid Ryugu were determined using a stepwise combustion method, along with Ivuna (CI) and Y-980115, a CI-like Antarctic meteorite, as references. The two Ryugu samples A0105-07 and C0106-07 showed bulk δ<sup>15</sup>N values of +1.7 ± 0.5‰ and +0.2 ± 0.6‰, respectively, significantly lower than Ivuna with +36.4 ± 0.4‰, but close to Y-980115 with +4.0 ± 0.3‰. The Ryugu samples are further characterized by C/N and <sup>36</sup>Ar/N ratios up to 3.4× and 4.9× the value of Ivuna, respectively. Among all Ryugu samples and CI chondrites, a positive correlation was observed between nitrogen concentrations and δ<sup>15</sup>N values, with samples with lower nitrogen concentrations exhibiting lower δ<sup>15</sup>N. This trend is explained by a two-component mixing model. One component is present at a constant abundance among all CI-related samples, with a δ<sup>15</sup>N value around 0‰ or lower. The other varies in abundance between different samples, and exhibits a δ<sup>15</sup>N value of +56 ± 4‰. The first <sup>15</sup>N-poor endmember is seemingly tightly incorporated into a carbonaceous host phase, whereas the <sup>15</sup>N-rich endmember can be mobilized and decoupled from carbon, potentially because it is in the form of ammonia. Asteroid materials with volatile compositions that are similar to those reported here for the Ryugu samples are attractive candidates for the volatile sources among Earth's building blocks.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 8","pages":"2117-2133"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14175","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14175","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The nitrogen isotope compositions of two samples returned from the asteroid Ryugu were determined using a stepwise combustion method, along with Ivuna (CI) and Y-980115, a CI-like Antarctic meteorite, as references. The two Ryugu samples A0105-07 and C0106-07 showed bulk δ15N values of +1.7 ± 0.5‰ and +0.2 ± 0.6‰, respectively, significantly lower than Ivuna with +36.4 ± 0.4‰, but close to Y-980115 with +4.0 ± 0.3‰. The Ryugu samples are further characterized by C/N and 36Ar/N ratios up to 3.4× and 4.9× the value of Ivuna, respectively. Among all Ryugu samples and CI chondrites, a positive correlation was observed between nitrogen concentrations and δ15N values, with samples with lower nitrogen concentrations exhibiting lower δ15N. This trend is explained by a two-component mixing model. One component is present at a constant abundance among all CI-related samples, with a δ15N value around 0‰ or lower. The other varies in abundance between different samples, and exhibits a δ15N value of +56 ± 4‰. The first 15N-poor endmember is seemingly tightly incorporated into a carbonaceous host phase, whereas the 15N-rich endmember can be mobilized and decoupled from carbon, potentially because it is in the form of ammonia. Asteroid materials with volatile compositions that are similar to those reported here for the Ryugu samples are attractive candidates for the volatile sources among Earth's building blocks.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.