Magnetoelectric effect in multiferroic nickelate perovskite YNiO3

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-08-15 DOI:10.1038/s43246-024-00604-2
Nazaret Ortiz Hernández, Elizabeth Skoropata, Hiroki Ueda, Max Burian, José Antonio Alonso, Urs Staub
{"title":"Magnetoelectric effect in multiferroic nickelate perovskite YNiO3","authors":"Nazaret Ortiz Hernández, Elizabeth Skoropata, Hiroki Ueda, Max Burian, José Antonio Alonso, Urs Staub","doi":"10.1038/s43246-024-00604-2","DOIUrl":null,"url":null,"abstract":"The interaction of magnetic order and spontaneous polarization is a fundamental coupling with the prospect for the control of electronic properties and magnetism. The connection among magnetic order, charge localization and associated metal-insulator transition (MIT) are cornerstones for materials control. Materials that combine both effects are therefore of great interest for testing models that claim the occurrence of spontaneous polarization from magnetic and charge order. One class of materials proposed to combine these functionalities is the family of RNiO3 (R: Lanthanide or Yttrium), whose members show a clear MIT and an antiferromagnetic ground state and for which an electric polarization has been predicted. Here, using resonant magnetic x-ray scattering with circular polarization and an applied electric field we show that YNiO3 possess a magnetic structure containing domains of spin-rotations that are consistent with an electric polarization. We show a reversal of the magnetic structure with the applied electric field confirming that charge ordered RNiO3 are magnetoelectric type II multiferroics with a MIT. Materials that combine magnetic order and charge localization are interesting for the prospect of realizing spontaneous polarization from magnetic and charge order. Here, YNiO3 is shown to have a spiral magnetic structure, with domains of spin-rotations consistent with an electric polarization, which can be reversed by an external electric field.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00604-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00604-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of magnetic order and spontaneous polarization is a fundamental coupling with the prospect for the control of electronic properties and magnetism. The connection among magnetic order, charge localization and associated metal-insulator transition (MIT) are cornerstones for materials control. Materials that combine both effects are therefore of great interest for testing models that claim the occurrence of spontaneous polarization from magnetic and charge order. One class of materials proposed to combine these functionalities is the family of RNiO3 (R: Lanthanide or Yttrium), whose members show a clear MIT and an antiferromagnetic ground state and for which an electric polarization has been predicted. Here, using resonant magnetic x-ray scattering with circular polarization and an applied electric field we show that YNiO3 possess a magnetic structure containing domains of spin-rotations that are consistent with an electric polarization. We show a reversal of the magnetic structure with the applied electric field confirming that charge ordered RNiO3 are magnetoelectric type II multiferroics with a MIT. Materials that combine magnetic order and charge localization are interesting for the prospect of realizing spontaneous polarization from magnetic and charge order. Here, YNiO3 is shown to have a spiral magnetic structure, with domains of spin-rotations consistent with an electric polarization, which can be reversed by an external electric field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多铁性镍酸盐过氧化物 YNiO3 中的磁电效应
磁序与自发极化的相互作用是一种基本耦合,具有控制电子特性和磁性的前景。磁序、电荷定位和相关的金属-绝缘体转变(MIT)之间的联系是材料控制的基石。因此,将这两种效应结合在一起的材料对于测试声称磁序和电荷序会产生自发极化的模型具有重大意义。RNiO3(R:镧系元素或钇)家族就是一类兼具这些功能的材料,其成员显示出明显的 MIT 和反铁磁基态,并已预测出电极化。在这里,我们利用共振磁 x 射线散射与圆极化和外加电场,显示出 YNiO3 具有磁性结构,其中包含与电极化一致的自旋旋转域。我们还展示了磁性结构随外加电场发生逆转的现象,从而证实电荷有序的 RNiO3 是具有 MIT 的磁电 II 型多铁氧体。磁有序和电荷局域化相结合的材料对于实现磁有序和电荷有序自发极化的前景非常有趣。在这里,YNiO3 被证明具有螺旋磁性结构,其自旋旋转域与电极化一致,并可通过外部电场逆转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Unraveling the origin of conductivity change in Co-doped FeRh phase transition Author Correction: Electrical response and biodegradation of Sepia melanin-shellac films printed on paper Thermodynamic evidence for polaron stabilization inside the antiferromagnetic order of Eu5In2Sb6 Benefits and complexity of defects in metal-organic frameworks Multi-sensing yarns for continuous wireless sweat lactate monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1