{"title":"Geometric Approaches to Lagrangian Averaging","authors":"Andrew D. Gilbert, Jacques Vanneste","doi":"10.1146/annurev-fluid-030524-095913","DOIUrl":null,"url":null,"abstract":"Lagrangian averaging theories, most notably the generalized Lagrangian mean (GLM) theory of Andrews and McIntyre, have been primarily developed in Euclidean space and Cartesian coordinates. We reinterpret these theories using a geometric, coordinate-free formulation. This gives central roles to the flow map, its decomposition into mean and perturbation maps, and the momentum 1-form dual to the velocity vector. In this interpretation, the Lagrangian mean of any tensorial quantity is obtained by averaging its pull-back to the mean configuration. Crucially, the mean velocity is not a Lagrangian mean in this sense. It can be defined in a variety of ways, leading to alternative Lagrangian mean formulations that include GLM and Soward and Roberts's volume-preserving version. These formulations share key features that the geometric approach uncovers. We derive governing equations both for the mean flow and for wave activities constraining the dynamics of the perturbations. The presentation focuses on the Boussinesq model for inviscid rotating stratified flows and reviews the necessary tools of differential geometry.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"3 1","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-030524-095913","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lagrangian averaging theories, most notably the generalized Lagrangian mean (GLM) theory of Andrews and McIntyre, have been primarily developed in Euclidean space and Cartesian coordinates. We reinterpret these theories using a geometric, coordinate-free formulation. This gives central roles to the flow map, its decomposition into mean and perturbation maps, and the momentum 1-form dual to the velocity vector. In this interpretation, the Lagrangian mean of any tensorial quantity is obtained by averaging its pull-back to the mean configuration. Crucially, the mean velocity is not a Lagrangian mean in this sense. It can be defined in a variety of ways, leading to alternative Lagrangian mean formulations that include GLM and Soward and Roberts's volume-preserving version. These formulations share key features that the geometric approach uncovers. We derive governing equations both for the mean flow and for wave activities constraining the dynamics of the perturbations. The presentation focuses on the Boussinesq model for inviscid rotating stratified flows and reviews the necessary tools of differential geometry.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.