Multi-spectral reflection matrix for ultrafast 3D label-free microscopy

IF 32.3 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2024-08-16 DOI:10.1038/s41566-024-01479-y
Paul Balondrade, Victor Barolle, Nicolas Guigui, Emeric Auriant, Nathan Rougier, Claude Boccara, Mathias Fink, Alexandre Aubry
{"title":"Multi-spectral reflection matrix for ultrafast 3D label-free microscopy","authors":"Paul Balondrade, Victor Barolle, Nicolas Guigui, Emeric Auriant, Nathan Rougier, Claude Boccara, Mathias Fink, Alexandre Aubry","doi":"10.1038/s41566-024-01479-y","DOIUrl":null,"url":null,"abstract":"Label-free microscopy exploits light scattering to obtain a three-dimensional image of biological tissues. However, light propagation is affected by aberrations and multiple scattering, which drastically degrade the image quality and limit the penetration depth. Multi-conjugate adaptive optics and time-gated matrix approaches have been developed to compensate for aberrations but the associated frame rate is extremely limited for three-dimensional imaging. Here we develop a multi-spectral matrix approach to solve these fundamental problems. On the basis of a sparse illumination scheme and an interferometric measurement of the reflected wave field at multiple wavelengths, the focusing process can be optimized in post-processing for any voxel by addressing independently each frequency component of the reflection matrix. A proof-of-concept experiment shows a three-dimensional image of an opaque human cornea over a 0.1 mm3 field of view at a 290 nm resolution and a 1 Hz frame rate. This work paves the way towards a fully digital microscope allowing real-time, in vivo, quantitative and deep inspection of tissues. Based on the acquisition of a multi-spectral reflection matrix at a high frame rate, a fully digital microscope overcomes aberrations and multiple scattering to provide a three-dimensional image of an ex vivo opaque cornea at a resolution of 0.29 μm and 0.5 μm in the transverse and axial directions, respectively.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":null,"pages":null},"PeriodicalIF":32.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01479-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Label-free microscopy exploits light scattering to obtain a three-dimensional image of biological tissues. However, light propagation is affected by aberrations and multiple scattering, which drastically degrade the image quality and limit the penetration depth. Multi-conjugate adaptive optics and time-gated matrix approaches have been developed to compensate for aberrations but the associated frame rate is extremely limited for three-dimensional imaging. Here we develop a multi-spectral matrix approach to solve these fundamental problems. On the basis of a sparse illumination scheme and an interferometric measurement of the reflected wave field at multiple wavelengths, the focusing process can be optimized in post-processing for any voxel by addressing independently each frequency component of the reflection matrix. A proof-of-concept experiment shows a three-dimensional image of an opaque human cornea over a 0.1 mm3 field of view at a 290 nm resolution and a 1 Hz frame rate. This work paves the way towards a fully digital microscope allowing real-time, in vivo, quantitative and deep inspection of tissues. Based on the acquisition of a multi-spectral reflection matrix at a high frame rate, a fully digital microscope overcomes aberrations and multiple scattering to provide a three-dimensional image of an ex vivo opaque cornea at a resolution of 0.29 μm and 0.5 μm in the transverse and axial directions, respectively.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于超快三维无标记显微镜的多光谱反射矩阵
无标记显微镜利用光散射获得生物组织的三维图像。然而,光的传播会受到像差和多重散射的影响,从而大大降低图像质量并限制穿透深度。目前已开发出多共轭自适应光学和时间门控矩阵方法来补偿像差,但对于三维成像来说,相关的帧速率极其有限。在此,我们开发了一种多光谱矩阵方法来解决这些基本问题。在稀疏照明方案和多波长反射波场干涉测量的基础上,通过独立处理反射矩阵的每个频率分量,可以在后处理中优化任何体素的聚焦过程。概念验证实验显示,在 290 纳米分辨率和 1 Hz 帧速率下,在 0.1 立方毫米的视场内生成了不透明人体角膜的三维图像。这项工作为实现实时、活体、定量和深入检查组织的全数字显微镜铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Author Correction: Image-guided computational holographic wavefront shaping Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon Attosecond transient interferometry Minute-scale Schrödinger-cat state of spin-5/2 atoms Nonlinear optical colloidal metacrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1