Brandon K. Phan, Kuan-Hsuan Shen, Rishi Gurnani, Huan Tran, Ryan Lively, Rampi Ramprasad
{"title":"Gas permeability, diffusivity, and solubility in polymers: Simulation-experiment data fusion and multi-task machine learning","authors":"Brandon K. Phan, Kuan-Hsuan Shen, Rishi Gurnani, Huan Tran, Ryan Lively, Rampi Ramprasad","doi":"10.1038/s41524-024-01373-9","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) models for predicting gas permeability through polymers have traditionally relied on experimental data. While these models exhibit robustness within familiar chemical domains, reliability wanes when applied to new spaces. To address this challenge, we present a multi-tiered multi-task learning framework empowered with advanced machine-crafted polymer fingerprinting algorithms and data fusion techniques. This framework combines scarce “high-fidelity” experimental data with abundant diverse “low-fidelity” simulation or synthetic data, resulting in predictive models that display a high level of generalizability across novel chemical spaces. Additionally, this multi-task scheme capitalizes on known physics and interrelated properties, such as gas diffusivity and solubility, both of which are closely tied to permeability. By amalgamating high throughput generated simulation data with available experimental data for gas permeability, diffusivity, and solubility for various gases, we construct multi-task deep learning models. These models can simultaneously predict all three properties for all gases under consideration, with markedly enhanced predictive accuracy, particularly compared to traditional models reliant solely on experimental data for a singular property. This strategy underscores the potential of coupling high-throughput classical simulations with data fusion methodologies to yield state-of-the-art property predictors, especially when experimental data for targeted properties is scarce.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"40 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01373-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) models for predicting gas permeability through polymers have traditionally relied on experimental data. While these models exhibit robustness within familiar chemical domains, reliability wanes when applied to new spaces. To address this challenge, we present a multi-tiered multi-task learning framework empowered with advanced machine-crafted polymer fingerprinting algorithms and data fusion techniques. This framework combines scarce “high-fidelity” experimental data with abundant diverse “low-fidelity” simulation or synthetic data, resulting in predictive models that display a high level of generalizability across novel chemical spaces. Additionally, this multi-task scheme capitalizes on known physics and interrelated properties, such as gas diffusivity and solubility, both of which are closely tied to permeability. By amalgamating high throughput generated simulation data with available experimental data for gas permeability, diffusivity, and solubility for various gases, we construct multi-task deep learning models. These models can simultaneously predict all three properties for all gases under consideration, with markedly enhanced predictive accuracy, particularly compared to traditional models reliant solely on experimental data for a singular property. This strategy underscores the potential of coupling high-throughput classical simulations with data fusion methodologies to yield state-of-the-art property predictors, especially when experimental data for targeted properties is scarce.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.