Quality improvement synthetic aperture radar (SAR) images using compressive sensing (CS) with Moore-Penrose inverse (MPI) and prior from spatial variant apodization (SVA).

Tao Xiong, Yachao Li, Mengdao Xing
{"title":"Quality improvement synthetic aperture radar (SAR) images using compressive sensing (CS) with Moore-Penrose inverse (MPI) and prior from spatial variant apodization (SVA).","authors":"Tao Xiong, Yachao Li, Mengdao Xing","doi":"10.1109/TPAMI.2024.3444910","DOIUrl":null,"url":null,"abstract":"<p><p>When the locations of non-zero samples are known, the Moore-Penrose inverse (MPI) can be used for the data recovery of compressive sensing (CS). First, the prior from the locations is used to shrink the measurement matrix in CS. Then the data can be recovered by using MPI with such shrinking matrix. We can also prove that the results of data recovery from the original CS and our MPI-based method are the same mathematically. Based on such finding, a novel sidelobe-reduction method for synthetic aperture radar (SAR) and Polarimetric SAR (POLSAR) images is studied. The aim of sidelobe reduction is to recover the samples within the mainlobes and suppress the ones within the sidelobes. In our study, prior from spatial variant apodization (SVA) is used to determine the locations of the mainlobes and the sidelobes, respectively. With CS, the mainlobe area can be well recovered. Samples within the sidelobe areas are also recovered using background fusion. Our method is suitable for acquired data with large sizes. The performance of the proposed algorithm is evaluated with acquired spaceborne SAR and air-borne POLSAR data. In our experiments, we use the 1m space-borne SAR data with the size of 10000 (samples) × 10000 (samples) and 0.3m POLSAR data with the size of 10000 (samples) × 26000 (samples) for sidelobe suppression. Furthermore, We also verified that, our method does not affect the polarization signatures. The effectiveness for the sidelobe suppression is qualitatively examined, and results were satisfactory.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3444910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When the locations of non-zero samples are known, the Moore-Penrose inverse (MPI) can be used for the data recovery of compressive sensing (CS). First, the prior from the locations is used to shrink the measurement matrix in CS. Then the data can be recovered by using MPI with such shrinking matrix. We can also prove that the results of data recovery from the original CS and our MPI-based method are the same mathematically. Based on such finding, a novel sidelobe-reduction method for synthetic aperture radar (SAR) and Polarimetric SAR (POLSAR) images is studied. The aim of sidelobe reduction is to recover the samples within the mainlobes and suppress the ones within the sidelobes. In our study, prior from spatial variant apodization (SVA) is used to determine the locations of the mainlobes and the sidelobes, respectively. With CS, the mainlobe area can be well recovered. Samples within the sidelobe areas are also recovered using background fusion. Our method is suitable for acquired data with large sizes. The performance of the proposed algorithm is evaluated with acquired spaceborne SAR and air-borne POLSAR data. In our experiments, we use the 1m space-borne SAR data with the size of 10000 (samples) × 10000 (samples) and 0.3m POLSAR data with the size of 10000 (samples) × 26000 (samples) for sidelobe suppression. Furthermore, We also verified that, our method does not affect the polarization signatures. The effectiveness for the sidelobe suppression is qualitatively examined, and results were satisfactory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用压缩传感技术(CS)、摩尔-彭罗斯反演技术(MPI)和空间变异聚焦先验技术(SVA)提高合成孔径雷达(SAR)图像的质量。
当非零样本的位置已知时,摩尔-彭罗斯逆(MPI)可用于压缩传感(CS)的数据恢复。首先,利用位置先验来缩小 CS 中的测量矩阵。然后,利用 MPI 和缩小后的矩阵恢复数据。我们还可以证明,原始 CS 和基于 MPI 方法的数据恢复结果在数学上是相同的。基于上述发现,我们研究了一种用于合成孔径雷达(SAR)和极坐标合成孔径雷达(POLSAR)图像的新型减少侧叶方法。减少侧叶的目的是恢复主叶内的样本,抑制侧叶内的样本。在我们的研究中,先验空间变异日调(SVA)被用来分别确定主叶和边叶的位置。利用 CS 可以很好地恢复主叶区域。侧叶区域内的样本也能通过背景融合得到恢复。我们的方法适用于大尺寸的采集数据。我们利用获取的空间合成孔径雷达和机载 POLSAR 数据对所提算法的性能进行了评估。在实验中,我们使用 10000(样本)×10000(样本)大小的 1m 星载合成孔径雷达数据和 10000(样本)×26000(样本)大小的 0.3m POLSAR 数据来抑制侧叶。此外,我们还验证了我们的方法不会影响偏振特征。我们对抑制侧叶的效果进行了定性检验,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diversifying Policies with Non-Markov Dispersion to Expand the Solution Space. Integrating Neural Radiance Fields End-to-End for Cognitive Visuomotor Navigation. Variational Label Enhancement for Instance-Dependent Partial Label Learning. TagCLIP: Improving Discrimination Ability of Zero-Shot Semantic Segmentation. Efficient Neural Collaborative Search for Pickup and Delivery Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1