Integrating Neural Radiance Fields End-to-End for Cognitive Visuomotor Navigation

Qiming Liu;Haoran Xin;Zhe Liu;Hesheng Wang
{"title":"Integrating Neural Radiance Fields End-to-End for Cognitive Visuomotor Navigation","authors":"Qiming Liu;Haoran Xin;Zhe Liu;Hesheng Wang","doi":"10.1109/TPAMI.2024.3455252","DOIUrl":null,"url":null,"abstract":"We propose an end-to-end visuomotor navigation framework that leverages Neural Radiance Fields (NeRF) for spatial cognition. To the best of our knowledge, this is the first effort to integrate such implicit spatial representation with embodied policy end-to-end for cognitive decision-making. Consequently, our system does not necessitate modularized designs nor transformations into explicit scene representations for downstream control. The NeRF-based memory is constructed online during navigation, without relying on any environmental priors. To enhance the extraction of decision-critical historical insights from the rigid and implicit structure of NeRF, we introduce a spatial information extraction mechanism named Structural Radiance Attention (SRA). SRA empowers the agent to grasp complex scene structures and task objectives, thus paving the way for the development of intelligent behavioral patterns. Our comprehensive testing in image-goal navigation tasks demonstrates that our approach significantly outperforms existing navigation models. We demonstrate that SRA markedly improves the agent's understanding of both the scene and the task by retrieving historical information stored in NeRF memory. The agent also learns exploratory awareness from our pipeline to better adapt to low signal-to-noise memory signals in unknown scenes. We deploy our navigation system on a mobile robot in real-world scenarios, where it exhibits evident cognitive capabilities while ensuring real-time performance.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"11200-11215"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10668846/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an end-to-end visuomotor navigation framework that leverages Neural Radiance Fields (NeRF) for spatial cognition. To the best of our knowledge, this is the first effort to integrate such implicit spatial representation with embodied policy end-to-end for cognitive decision-making. Consequently, our system does not necessitate modularized designs nor transformations into explicit scene representations for downstream control. The NeRF-based memory is constructed online during navigation, without relying on any environmental priors. To enhance the extraction of decision-critical historical insights from the rigid and implicit structure of NeRF, we introduce a spatial information extraction mechanism named Structural Radiance Attention (SRA). SRA empowers the agent to grasp complex scene structures and task objectives, thus paving the way for the development of intelligent behavioral patterns. Our comprehensive testing in image-goal navigation tasks demonstrates that our approach significantly outperforms existing navigation models. We demonstrate that SRA markedly improves the agent's understanding of both the scene and the task by retrieving historical information stored in NeRF memory. The agent also learns exploratory awareness from our pipeline to better adapt to low signal-to-noise memory signals in unknown scenes. We deploy our navigation system on a mobile robot in real-world scenarios, where it exhibits evident cognitive capabilities while ensuring real-time performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从头到尾整合神经辐射场,实现认知视觉运动导航。
我们提出了一个端到端的视觉运动导航框架,利用神经辐射场(NeRF)进行空间认知。据我们所知,这是首次将这种隐式空间表征与用于认知决策的端到端嵌入式策略整合在一起。因此,我们的系统既不需要模块化设计,也不需要转换成显式场景表示来进行下游控制。基于 NeRF 的记忆是在导航过程中在线构建的,无需依赖任何环境先验。为了加强从 NeRF 的刚性和隐式结构中提取对决策至关重要的历史洞察力,我们引入了一种名为 "结构辐射注意"(SRA)的空间信息提取机制。SRA 可使代理掌握复杂的场景结构和任务目标,从而为开发智能行为模式铺平道路。我们在图像目标导航任务中进行的全面测试表明,我们的方法明显优于现有的导航模型。我们证明,通过检索存储在 NeRF 内存中的历史信息,SRA 显著提高了代理对场景和任务的理解。代理还能从我们的管道中学习探索意识,从而更好地适应未知场景中的低信噪比记忆信号。我们在实际场景中的移动机器人上部署了我们的导航系统,该系统在确保实时性能的同时,还展现了明显的认知能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language-Inspired Relation Transfer for Few-Shot Class-Incremental Learning. Multi-Modality Multi-Attribute Contrastive Pre-Training for Image Aesthetics Computing. 360SFUDA++: Towards Source-Free UDA for Panoramic Segmentation by Learning Reliable Category Prototypes. Anti-Forgetting Adaptation for Unsupervised Person Re-Identification. Evolved Hierarchical Masking for Self-Supervised Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1