Mingxuan Li , Suoqing Zhang , Jiansong Wang , Jiahui Li , Wei Zhao , Leida Zhang , Mingyang Chen , Dandan Han , Junbo Gong
{"title":"Particle size distribution design of limited agglomeration via geometric morphology in erythritol crystallization","authors":"Mingxuan Li , Suoqing Zhang , Jiansong Wang , Jiahui Li , Wei Zhao , Leida Zhang , Mingyang Chen , Dandan Han , Junbo Gong","doi":"10.1016/j.partic.2024.07.017","DOIUrl":null,"url":null,"abstract":"<div><p>Regarding sugar and salt crystallization with large single crystals, the agglomerate thermodynamics and geometric morphologies, not the dynamics, dominate the particle size distribution (PSD). To consider this issue, a PSD design model is proposed for limited large crystal agglomeration. In this model, the agglomeration thermodynamic criticality is determined by estimating the adhesion and dispersion forces between single crystals. The geometric agglomerate morphologies are described by corresponding single crystal units stacking with porosity. By seed well-controlled of population, the key parameters of PSD (D01, D50 and D99) are precisely designed. For erythritol, the model design accuracies are 92%–99% in the 1.2 L and 10 L crystallizers, indicating that it can design PSD at various crystallization scales. Concerning the general research attention to microcrystal agglomeration kinetics (mostly active pharmaceutical ingredients), this model effectively guides the sugar and salt PSD design with limited large crystal agglomeration.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 158-172"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001445","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Regarding sugar and salt crystallization with large single crystals, the agglomerate thermodynamics and geometric morphologies, not the dynamics, dominate the particle size distribution (PSD). To consider this issue, a PSD design model is proposed for limited large crystal agglomeration. In this model, the agglomeration thermodynamic criticality is determined by estimating the adhesion and dispersion forces between single crystals. The geometric agglomerate morphologies are described by corresponding single crystal units stacking with porosity. By seed well-controlled of population, the key parameters of PSD (D01, D50 and D99) are precisely designed. For erythritol, the model design accuracies are 92%–99% in the 1.2 L and 10 L crystallizers, indicating that it can design PSD at various crystallization scales. Concerning the general research attention to microcrystal agglomeration kinetics (mostly active pharmaceutical ingredients), this model effectively guides the sugar and salt PSD design with limited large crystal agglomeration.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.