Aerosol emissions and mitigation of aqueous AMP/PZ solvent for postcombustion CO2 capture

{"title":"Aerosol emissions and mitigation of aqueous AMP/PZ solvent for postcombustion CO2 capture","authors":"","doi":"10.1016/j.ccst.2024.100273","DOIUrl":null,"url":null,"abstract":"<div><p>Aerosol emissions from the CO<sub>2</sub>-capture process have a significant impact on both solvent depletion and environmental contamination. This work comprehensively investigated the emissions of AMP (2-amino-2-methyl-1propanol)/PZ (piperazine) from a bench-scale platform and a CO<sub>2</sub>-capture pilot plant. The concentration of nuclei in flue gas is a key factor affecting aerosol emissions, and a high nuclei concentration leads to more serious aerosol emission problems. The amine emissions after the absorber in the three different scenarios (no added nuclei, nuclei added, and pilot plant) were 273, 1051, and 1347 mg/Nm<sup>3</sup>, respectively. Increasing the lean-solvent temperature promoted aerosol emissions, and increasing the liquid/gas ratio and CO<sub>2</sub> loading in the lean solvent suppressed aerosol emissions. In the pilot plant, the effects of four mitigation measures were evaluated, and it was found that dry bed and acid washing had better mitigation effects than did conventional water washing; amine emissions could be reduced to as low as 21 mg/Nm<sup>3</sup> PZ and 25 mg/Nm<sup>3</sup> AMP. This study provides a reference for the design and optimization of carbon-dioxide-capture systems, which can help to reduce the impact on the environment.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277265682400085X/pdfft?md5=1cc9bb8194f28e2f8f31a48d520dff72&pid=1-s2.0-S277265682400085X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277265682400085X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aerosol emissions from the CO2-capture process have a significant impact on both solvent depletion and environmental contamination. This work comprehensively investigated the emissions of AMP (2-amino-2-methyl-1propanol)/PZ (piperazine) from a bench-scale platform and a CO2-capture pilot plant. The concentration of nuclei in flue gas is a key factor affecting aerosol emissions, and a high nuclei concentration leads to more serious aerosol emission problems. The amine emissions after the absorber in the three different scenarios (no added nuclei, nuclei added, and pilot plant) were 273, 1051, and 1347 mg/Nm3, respectively. Increasing the lean-solvent temperature promoted aerosol emissions, and increasing the liquid/gas ratio and CO2 loading in the lean solvent suppressed aerosol emissions. In the pilot plant, the effects of four mitigation measures were evaluated, and it was found that dry bed and acid washing had better mitigation effects than did conventional water washing; amine emissions could be reduced to as low as 21 mg/Nm3 PZ and 25 mg/Nm3 AMP. This study provides a reference for the design and optimization of carbon-dioxide-capture systems, which can help to reduce the impact on the environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于燃烧后二氧化碳捕获的 AMP/PZ 水溶液的气溶胶排放和缓解措施
二氧化碳捕集过程中的气溶胶排放对溶剂消耗和环境污染都有重大影响。这项研究全面调查了台式平台和二氧化碳捕集中试装置中 AMP(2-氨基-2-甲基-1-丙醇)/PZ(哌嗪)的排放情况。烟气中的原子核浓度是影响气溶胶排放的关键因素,原子核浓度过高会导致更严重的气溶胶排放问题。在三种不同方案(未添加核子、添加核子和中试装置)中,吸收器后的胺排放量分别为 273、1051 和 1347 mg/Nm3。提高贫溶剂温度会促进气溶胶排放,而提高贫溶剂中的液气比和二氧化碳含量则会抑制气溶胶排放。在试验工厂中,对四种减缓措施的效果进行了评估,结果发现干床和酸洗的减缓效果优于传统的水洗;胺排放可降至最低 21 mg/Nm3 PZ 和 25 mg/Nm3 AMP。这项研究为二氧化碳捕集系统的设计和优化提供了参考,有助于减少对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breakthroughs in CH4 capture technologies: Key to reducing fugitive methane emissions in the energy sector Thermal characterization and moisture adsorption performance of calcium alginate hydrogel/silica gel/polyvinylpyrrolidone/expanded graphite composite desiccant Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1