{"title":"Optimization of ultrasound-assisted extraction of faba bean protein isolate: Structural, functional, and thermal properties. Part 2/2","authors":"","doi":"10.1016/j.ultsonch.2024.107030","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental concerns linked to animal-based protein production have intensified interest in sustainable alternatives, with a focus on underutilized plant proteins. Faba beans, primarily used for animal feed, offer a high-quality protein source with promising bioactive compounds for food applications. This study explores the efficacy of ultrasound-assisted extraction under optimal conditions (123 W power, 1:15 g/mL solute/solvent ratio, 41 min sonication, 623 mL total volume) to isolate faba bean protein (U-FBPI). The ultrasound-assisted method achieved a protein extraction yield of 19.75 % and a protein content of 92.87 %, outperforming the control method’s yield of 16.41 % and protein content of 89.88 %. Electrophoretic analysis confirmed no significant changes in the primary structure of U-FBPI compared to the control. However, Fourier-transform infrared spectroscopy revealed modifications in the secondary structure due to ultrasound treatment. The U-FBPI demonstrated superior water and oil holding capacities compared to the control protein isolate, although its foaming capacity was reduced by ultrasound. Thermal analysis indicated minimal impact on the protein’s thermal properties under the applied ultrasound conditions. This research highlights the potential of ultrasound-assisted extraction for improving the functional properties of faba bean protein isolates, presenting a viable approach for advancing plant-based food production and contributing to sustainable protein consumption.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002785/pdfft?md5=a5a4aff8536666e4e77fc1c15ef6c73c&pid=1-s2.0-S1350417724002785-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002785","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental concerns linked to animal-based protein production have intensified interest in sustainable alternatives, with a focus on underutilized plant proteins. Faba beans, primarily used for animal feed, offer a high-quality protein source with promising bioactive compounds for food applications. This study explores the efficacy of ultrasound-assisted extraction under optimal conditions (123 W power, 1:15 g/mL solute/solvent ratio, 41 min sonication, 623 mL total volume) to isolate faba bean protein (U-FBPI). The ultrasound-assisted method achieved a protein extraction yield of 19.75 % and a protein content of 92.87 %, outperforming the control method’s yield of 16.41 % and protein content of 89.88 %. Electrophoretic analysis confirmed no significant changes in the primary structure of U-FBPI compared to the control. However, Fourier-transform infrared spectroscopy revealed modifications in the secondary structure due to ultrasound treatment. The U-FBPI demonstrated superior water and oil holding capacities compared to the control protein isolate, although its foaming capacity was reduced by ultrasound. Thermal analysis indicated minimal impact on the protein’s thermal properties under the applied ultrasound conditions. This research highlights the potential of ultrasound-assisted extraction for improving the functional properties of faba bean protein isolates, presenting a viable approach for advancing plant-based food production and contributing to sustainable protein consumption.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.