Bo Wang , Qi Chen , Mengmeng Wang , Yuntian Chen , Zhengjia Zhang , Xiuguo Liu , Wei Gao , Yanzhen Zhang , Haoran Zhang
{"title":"PVF-10: A high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification","authors":"Bo Wang , Qi Chen , Mengmeng Wang , Yuntian Chen , Zhengjia Zhang , Xiuguo Liu , Wei Gao , Yanzhen Zhang , Haoran Zhang","doi":"10.1016/j.apenergy.2024.124187","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate identification of faulty photovoltaic (PV) modules is crucial for the effective operation and maintenance of PV systems. Deep learning (DL) algorithms exhibit promising potential for classifying PV fault (PVF) from thermal infrared (TIR) images captured by unmanned aerial vehicle (UAV), contingent upon the availability of extensive and high-quality labeled data. However, existing TIR PVF datasets are limited by low image resolution and incomplete coverage of fault types. This study proposes a high-resolution TIR PVF dataset with 10 classes, named PVF-10, comprising 5579 cropped images of PV panels collected from 8 PV power plants. These classes are further categorized into two groups according to the repairability of PVF, with 5 repairable and 5 irreparable classes each. Additionally, the circuit mechanisms underlying the TIR image features of typical PVF types are analyzed, supported by high-resolution images, thereby providing comprehensive information for PV operators. Finally, five state-of-the-art DL algorithms are trained and validated based on the PVF-10 dataset using three levels of resampling strategy. The results show that the overall accuracy (OA) of these algorithms exceeds 83%, with the highest OA reaching 93.32%. Moreover, the preprocessing procedure involving resampling and padding strategies are beneficial for improving PVF classification accuracy using PVF-10 datasets. The developed PVF-10 dataset is expected to stimulate further research and innovation in PVF classification.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"376 ","pages":"Article 124187"},"PeriodicalIF":10.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924015708","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of faulty photovoltaic (PV) modules is crucial for the effective operation and maintenance of PV systems. Deep learning (DL) algorithms exhibit promising potential for classifying PV fault (PVF) from thermal infrared (TIR) images captured by unmanned aerial vehicle (UAV), contingent upon the availability of extensive and high-quality labeled data. However, existing TIR PVF datasets are limited by low image resolution and incomplete coverage of fault types. This study proposes a high-resolution TIR PVF dataset with 10 classes, named PVF-10, comprising 5579 cropped images of PV panels collected from 8 PV power plants. These classes are further categorized into two groups according to the repairability of PVF, with 5 repairable and 5 irreparable classes each. Additionally, the circuit mechanisms underlying the TIR image features of typical PVF types are analyzed, supported by high-resolution images, thereby providing comprehensive information for PV operators. Finally, five state-of-the-art DL algorithms are trained and validated based on the PVF-10 dataset using three levels of resampling strategy. The results show that the overall accuracy (OA) of these algorithms exceeds 83%, with the highest OA reaching 93.32%. Moreover, the preprocessing procedure involving resampling and padding strategies are beneficial for improving PVF classification accuracy using PVF-10 datasets. The developed PVF-10 dataset is expected to stimulate further research and innovation in PVF classification.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.