{"title":"Constructed black phosphorus quantum dots/BiVO4 Z-scheme heterojunction catalysis for efficient Rhodamine b degradation and DFT study","authors":"","doi":"10.1016/j.jphotochem.2024.115962","DOIUrl":null,"url":null,"abstract":"<div><p>Black phosphorus (BP) is highly regarded in photocatalysis for its bandgap thickness dependency, high hole mobility, and broad visible light absorption. This study introduces a simple hydrothermal method to construct a BP QDs/BiVO<sub>4</sub> direct Z-scheme heterojunction. The composite’s crystal structure, morphology, and photochemical properties were comprehensively characterized. The photocatalytic activity was evaluated using Rhodamine B (RhB) degradation under visible light. Notably, BP QDs<sub>0.12%</sub>/BiVO<sub>4</sub> exhibited exceptional performance, achieving a 95.4 % RhB degradation after 100 min, three times higher than BiVO<sub>4</sub> alone. The direct Z-scheme heterojunction played a pivotal role in facilitating <img>O<sub>2</sub><sup>−</sup> and h<sup>+</sup> involvement in the degradation process. The interfacial interaction between BP QDs and BiVO<sub>4</sub> significantly enhanced BiVO<sub>4</sub>′s visible light absorption, preserving its strong oxidation–reduction capacity. This enhancement was further corroborated by DFT simulation calculations. Overall, this study presents a novel approach for constructing efficient Z-scheme photocatalysts based on BP QDs, laying a solid foundation for their application in the field of photocatalytic degradation.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1010603024005069/pdfft?md5=e2dd26eb733a4b498b5b43f05f1fb1aa&pid=1-s2.0-S1010603024005069-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024005069","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Black phosphorus (BP) is highly regarded in photocatalysis for its bandgap thickness dependency, high hole mobility, and broad visible light absorption. This study introduces a simple hydrothermal method to construct a BP QDs/BiVO4 direct Z-scheme heterojunction. The composite’s crystal structure, morphology, and photochemical properties were comprehensively characterized. The photocatalytic activity was evaluated using Rhodamine B (RhB) degradation under visible light. Notably, BP QDs0.12%/BiVO4 exhibited exceptional performance, achieving a 95.4 % RhB degradation after 100 min, three times higher than BiVO4 alone. The direct Z-scheme heterojunction played a pivotal role in facilitating O2− and h+ involvement in the degradation process. The interfacial interaction between BP QDs and BiVO4 significantly enhanced BiVO4′s visible light absorption, preserving its strong oxidation–reduction capacity. This enhancement was further corroborated by DFT simulation calculations. Overall, this study presents a novel approach for constructing efficient Z-scheme photocatalysts based on BP QDs, laying a solid foundation for their application in the field of photocatalytic degradation.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.