Antonio Fuggi , Simone Re , Giorgio Tango , Sergio Del Gaudio , Alessandro Brovelli , Giorgio Cassiani
{"title":"Assessment of earthquake location uncertainties for the design of local seismic networks","authors":"Antonio Fuggi , Simone Re , Giorgio Tango , Sergio Del Gaudio , Alessandro Brovelli , Giorgio Cassiani","doi":"10.1016/j.eqs.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to estimate earthquake source locations, along with the appraisal of relevant uncertainties, is paramount in monitoring both natural and human-induced micro-seismicity. For this purpose, a monitoring network must be designed to minimize the location errors introduced by geometrically unbalanced networks. In this study, we first review different sources of errors relevant to the localization of seismic events, how they propagate through localization algorithms, and their impact on outcomes. We then propose a quantitative method, based on a Monte Carlo approach, to estimate the uncertainty in earthquake locations that is suited to the design, optimization, and assessment of the performance of a local seismic monitoring network. To illustrate the performance of the proposed approach, we analyzed the distribution of the localization uncertainties and their related dispersion for a highly dense grid of theoretical hypocenters in both the horizontal and vertical directions using an actual monitoring network layout. The results expand, quantitatively, the qualitative indications derived from purely geometrical parameters (azimuthal gap (AG)) and classical detectability maps. The proposed method enables the systematic design, optimization, and evaluation of local seismic monitoring networks, enhancing monitoring accuracy in areas proximal to hydrocarbon production, geothermal fields, underground natural gas storage, and other subsurface activities. This approach aids in the accurate estimation of earthquake source locations and their associated uncertainties, which are crucial for assessing and mitigating seismic risks, thereby enabling the implementation of proactive measures to minimize potential hazards. From an operational perspective, reliably estimating location accuracy is crucial for evaluating the position of seismogenic sources and assessing possible links between well activities and the onset of seismicity.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 5","pages":"Pages 415-433"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000661/pdfft?md5=fdf5e5b23a50a9c78a7e5af61bce7542&pid=1-s2.0-S1674451924000661-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451924000661","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to estimate earthquake source locations, along with the appraisal of relevant uncertainties, is paramount in monitoring both natural and human-induced micro-seismicity. For this purpose, a monitoring network must be designed to minimize the location errors introduced by geometrically unbalanced networks. In this study, we first review different sources of errors relevant to the localization of seismic events, how they propagate through localization algorithms, and their impact on outcomes. We then propose a quantitative method, based on a Monte Carlo approach, to estimate the uncertainty in earthquake locations that is suited to the design, optimization, and assessment of the performance of a local seismic monitoring network. To illustrate the performance of the proposed approach, we analyzed the distribution of the localization uncertainties and their related dispersion for a highly dense grid of theoretical hypocenters in both the horizontal and vertical directions using an actual monitoring network layout. The results expand, quantitatively, the qualitative indications derived from purely geometrical parameters (azimuthal gap (AG)) and classical detectability maps. The proposed method enables the systematic design, optimization, and evaluation of local seismic monitoring networks, enhancing monitoring accuracy in areas proximal to hydrocarbon production, geothermal fields, underground natural gas storage, and other subsurface activities. This approach aids in the accurate estimation of earthquake source locations and their associated uncertainties, which are crucial for assessing and mitigating seismic risks, thereby enabling the implementation of proactive measures to minimize potential hazards. From an operational perspective, reliably estimating location accuracy is crucial for evaluating the position of seismogenic sources and assessing possible links between well activities and the onset of seismicity.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.