Oxidative foaming plus in-situ activation and template synthesis of hierarchical porous carbon for high-performance supercapacitors

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Advanced Powder Technology Pub Date : 2024-08-16 DOI:10.1016/j.apt.2024.104617
{"title":"Oxidative foaming plus in-situ activation and template synthesis of hierarchical porous carbon for high-performance supercapacitors","authors":"","doi":"10.1016/j.apt.2024.104617","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an innovative approach for synthesizing hierarchical porous carbon materials (HPCMs) tailored for high-performance supercapacitors. The proposed method combines oxidative foaming with self-activation, in-situ template, in-situ activation and template synthesis, respectively, utilizing glucose reactions with oxidizing agents like ammonium persulfate (APS), magnesium nitrate hexahydrate (MNH), and potassium persulfate (KPS). The process involves two stages: low-temperature foaming to initiate macropore formation and high-temperature annealing to create meso/micropores through in-situ template and activation. Generally, increasing the ratio of oxidant to glucose in the synthesis process can notably enhance the high specific surface area and pore volume of the HPCMs with a combination of micro/meso/macropores, exhibiting maximum values of 821 m<sup>2</sup>/g and 0.61 cm<sup>3</sup>/g (APS), 2077 m<sup>2</sup>/g and 3.05 cm<sup>3</sup>/g (MNH), 1845 m<sup>2</sup>/g and 1.29 cm<sup>3</sup>/g (KPS), respectively. Furthermore, the O and N, or S elements, can also be in-situ doped in the carbon framework. The hierarchical porous structure and the doping elements enhance the electrochemical performance of supercapacitors. The APS@4, with a high mass loading of 3.2 mg/cm<sup>2</sup>, exhibits a superior specific capacitance of 144 F/g and an areal capacitance of 456 mF/cm<sup>2</sup> at a current density of 1 A/g. It demonstrates excellent cycling stability based on a capacitance retention of 100 % after 10,000 cycles.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002930","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative approach for synthesizing hierarchical porous carbon materials (HPCMs) tailored for high-performance supercapacitors. The proposed method combines oxidative foaming with self-activation, in-situ template, in-situ activation and template synthesis, respectively, utilizing glucose reactions with oxidizing agents like ammonium persulfate (APS), magnesium nitrate hexahydrate (MNH), and potassium persulfate (KPS). The process involves two stages: low-temperature foaming to initiate macropore formation and high-temperature annealing to create meso/micropores through in-situ template and activation. Generally, increasing the ratio of oxidant to glucose in the synthesis process can notably enhance the high specific surface area and pore volume of the HPCMs with a combination of micro/meso/macropores, exhibiting maximum values of 821 m2/g and 0.61 cm3/g (APS), 2077 m2/g and 3.05 cm3/g (MNH), 1845 m2/g and 1.29 cm3/g (KPS), respectively. Furthermore, the O and N, or S elements, can also be in-situ doped in the carbon framework. The hierarchical porous structure and the doping elements enhance the electrochemical performance of supercapacitors. The APS@4, with a high mass loading of 3.2 mg/cm2, exhibits a superior specific capacitance of 144 F/g and an areal capacitance of 456 mF/cm2 at a current density of 1 A/g. It demonstrates excellent cycling stability based on a capacitance retention of 100 % after 10,000 cycles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化发泡加原位活化和模板合成用于高性能超级电容器的分层多孔碳
本研究提出了一种合成高性能超级电容器专用分层多孔碳材料(HPCMs)的创新方法。所提出的方法将氧化发泡与自活化、原位模板、原位活化和模板合成相结合,分别利用葡萄糖与过硫酸铵(APS)、六水硝酸镁(MNH)和过硫酸钾(KPS)等氧化剂发生反应。该工艺包括两个阶段:低温发泡,启动大孔形成;高温退火,通过原位模板和活化形成中孔/微孔。一般来说,在合成过程中增加氧化剂与葡萄糖的比例,可显著提高具有微孔/中孔/大孔组合的 HPCM 的高比表面积和孔体积,其最大值分别为 821 平方米/克和 0.61 立方厘米/克(APS)、2077 平方米/克和 3.05 立方厘米/克(MNH)、1845 平方米/克和 1.29 立方厘米/克(KPS)。此外,还可以在碳框架中原位掺入 O 和 N 或 S 元素。分层多孔结构和掺杂元素提高了超级电容器的电化学性能。APS@4 的质量负荷高达 3.2 mg/cm2,在电流密度为 1 A/g 时,比电容高达 144 F/g,面积电容为 456 mF/cm2。根据 10,000 次循环后 100 % 的电容保持率计算,它具有出色的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
期刊最新文献
Optimization of conventional-zeolite-synthesis from waste pumice for water adsorption Validation of DEM simulations for a drum-type agitation mill using particle velocities measured by 3D PTV Inside Front Cover (Aims & Scope, Editors) Full title (Editorial Board Members) Reactive molecular dynamics analysis of alumina nano-powders under warm compaction process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1