Adsorption and depression mechanism of carrageenan on chalcopyrite and pyrite for the efficiency flotation separation

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Advanced Powder Technology Pub Date : 2024-08-16 DOI:10.1016/j.apt.2024.104615
Huifang Yang , Xiaoyu Cao , Jihui Luo , Jianxian Zeng , Xiaoping Huang , Jianrong Xue , Sheng Liu
{"title":"Adsorption and depression mechanism of carrageenan on chalcopyrite and pyrite for the efficiency flotation separation","authors":"Huifang Yang ,&nbsp;Xiaoyu Cao ,&nbsp;Jihui Luo ,&nbsp;Jianxian Zeng ,&nbsp;Xiaoping Huang ,&nbsp;Jianrong Xue ,&nbsp;Sheng Liu","doi":"10.1016/j.apt.2024.104615","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an eco-friendly compound, carrageenan, was employed as a depressant for the selective separation of chalcopyrite and pyrite. The depressant performance and mechanism were comprehensively investigated. The results of the flotation experiments demonstrated that carrageenan exhibited selective depression towards pyrite as opposed to chalcopyrite, achieving flotation recoveries of 88.57 % for chalcopyrite and 9.57 % for pyrite with the combination of 2 × 10<sup>-5</sup> mol/L SIBX and 20 mg/L carrageenan. The results of AFM and contact angle measurements revealed that carrageenan exhibited selective adsorption on pyrite surface, resulting in an enhancement in surface hydrophilicity. In contrast, the adsorption of carrageenan on chalcopyrite surface was found to be negligible. Zeta potential and XPS analyses further confirmed the chemisorption of carrageenan on the pyrite surface, indicating the reaction involving sulfuric acid and hydroxyl groups on carrageenan and Fe sites on pyrite. Therefore, carrageenan holds potential as a promising depressant for the selective separation of chalcopyrite from pyrite.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 10","pages":"Article 104615"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002917","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an eco-friendly compound, carrageenan, was employed as a depressant for the selective separation of chalcopyrite and pyrite. The depressant performance and mechanism were comprehensively investigated. The results of the flotation experiments demonstrated that carrageenan exhibited selective depression towards pyrite as opposed to chalcopyrite, achieving flotation recoveries of 88.57 % for chalcopyrite and 9.57 % for pyrite with the combination of 2 × 10-5 mol/L SIBX and 20 mg/L carrageenan. The results of AFM and contact angle measurements revealed that carrageenan exhibited selective adsorption on pyrite surface, resulting in an enhancement in surface hydrophilicity. In contrast, the adsorption of carrageenan on chalcopyrite surface was found to be negligible. Zeta potential and XPS analyses further confirmed the chemisorption of carrageenan on the pyrite surface, indicating the reaction involving sulfuric acid and hydroxyl groups on carrageenan and Fe sites on pyrite. Therefore, carrageenan holds potential as a promising depressant for the selective separation of chalcopyrite from pyrite.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡拉胶在黄铜矿和黄铁矿上的吸附和抑制机制促进高效浮选分离
本研究采用一种环保型化合物卡拉胶作为抑制剂,用于黄铜矿和黄铁矿的选择性分离。该研究全面考察了抑制剂的性能和机理。浮选实验结果表明,相对于黄铜矿,卡拉胶对黄铁矿具有选择性抑制作用,在 2 × 10-5 mol/L SIBX 和 20 mg/L 卡拉胶的组合下,黄铜矿的浮选回收率为 88.57%,黄铁矿的浮选回收率为 9.57%。原子力显微镜和接触角测量结果表明,卡拉胶在黄铁矿表面表现出选择性吸附,从而增强了表面亲水性。相比之下,黄铜矿表面对卡拉胶的吸附可以忽略不计。Zeta 电位和 XPS 分析进一步证实了卡拉胶在黄铁矿表面的化学吸附,表明硫酸和卡拉胶上的羟基与黄铁矿上的铁位点发生了反应。因此,卡拉胶可作为一种有前途的抑制剂,用于从黄铁矿中选择性地分离黄铜矿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
期刊最新文献
Numerical simulation of particle consolidation under compression and shear based on the Discrete Element method Simulations of hydrodynamics of droplet coating process using airless rotary sprayers Preparation of N-doped nanoporous carbon from ZIF-8 metal-organic framework via ultrasonic spray pyrolysis Spatiotemporal distribution visualization of solid volume fraction during LiCl-KCl molten salt solidification by thermal-compensated electrical resistance tomography (tcERT) Corrigendum to “Enhancement of luminescence and thermal stability in Eu3+-doped K3Y(BO2)6 with Li+ and Na+co-doping” [Adv. Powder Technol. 35 (2024) 104695]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1