The structural, electronic and magnetic properties of Fe3ZnC anti-perovskite

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Journal of Physics Pub Date : 2024-08-08 DOI:10.1016/j.cjph.2024.08.007
M. Hajjami , A. Oubelkacem , Y. Benhouria , M. Kibbou , I. Essaoudi , A. Ainane
{"title":"The structural, electronic and magnetic properties of Fe3ZnC anti-perovskite","authors":"M. Hajjami ,&nbsp;A. Oubelkacem ,&nbsp;Y. Benhouria ,&nbsp;M. Kibbou ,&nbsp;I. Essaoudi ,&nbsp;A. Ainane","doi":"10.1016/j.cjph.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive exploration of the structural, electronic, and magnetic attributes of anti-perovskite Fe3ZnC carbides was carried out using Density Functional Theory (DFT) and Monte Carlo Simulation (MCS). These anti-perovskite materials possess a unique structure where cation and anion positions are interchanged within the perovskite framework. Our study involves a comparative analysis of the electronic band structures and density of states (DOS) for Fe3ZnC, considering prior theoretical and experimental research. Understanding these anti-perovskite materials' band structures and DOS is pivotal for their effective utilization in magnetic sensors and magnetic refrigeration applications. Our results indicate that Fe3ZnC displays ferromagnetic metallic behavior, particularly when applying the Generalized Gradient Approximation (GGA). Notably, there is a significant overlap between the valence (VB) and conduction (CB) bands. Furthermore, MCS predicts a second-order ferromagnetic-to-paramagnetic transition in the anti-perovskite Fe3ZnC compound, characterized by a notably high Curie temperature. These insights advance our understanding of these materials, paving the way for their effective utilization in magnetic technologies.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003083","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive exploration of the structural, electronic, and magnetic attributes of anti-perovskite Fe3ZnC carbides was carried out using Density Functional Theory (DFT) and Monte Carlo Simulation (MCS). These anti-perovskite materials possess a unique structure where cation and anion positions are interchanged within the perovskite framework. Our study involves a comparative analysis of the electronic band structures and density of states (DOS) for Fe3ZnC, considering prior theoretical and experimental research. Understanding these anti-perovskite materials' band structures and DOS is pivotal for their effective utilization in magnetic sensors and magnetic refrigeration applications. Our results indicate that Fe3ZnC displays ferromagnetic metallic behavior, particularly when applying the Generalized Gradient Approximation (GGA). Notably, there is a significant overlap between the valence (VB) and conduction (CB) bands. Furthermore, MCS predicts a second-order ferromagnetic-to-paramagnetic transition in the anti-perovskite Fe3ZnC compound, characterized by a notably high Curie temperature. These insights advance our understanding of these materials, paving the way for their effective utilization in magnetic technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe3ZnC 反超晶石的结构、电子和磁性能
研究人员利用密度泛函理论(DFT)和蒙特卡罗模拟(MCS)对反包晶Fe3ZnC碳化物的结构、电子和磁属性进行了全面探索。这些反包晶石材料具有独特的结构,其中阳离子和阴离子的位置在包晶石框架内互换。我们的研究包括对 Fe3ZnC 的电子能带结构和状态密度(DOS)进行比较分析,同时考虑到之前的理论和实验研究。了解这些反包晶石材料的能带结构和 DOS 对于它们在磁传感器和磁制冷应用中的有效利用至关重要。我们的研究结果表明,Fe3ZnC 具有铁磁金属特性,尤其是在应用广义梯度近似法(GGA)时。值得注意的是,价带(VB)和导带(CB)之间存在明显的重叠。此外,MCS 预测了反超晶Fe3ZnC 化合物的二阶铁磁到顺磁转变,其特点是居里温度明显较高。这些见解增进了我们对这些材料的了解,为在磁性技术中有效利用它们铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
期刊最新文献
Synchronization in multiplex neural networks with homeostatic structural plasticity Resolving FLRW cosmology through effective equation of state in f(T) gravity Impact of temperature-dependent viscosity on linear and weakly nonlinear stability of double-diffusive convection in viscoelastic fluid Accurate measurement of wavelength-Dependent beam parameters of a supercontinuum light source focused by a lensed fiber probe Exploring Tsallis thermodynamics for boundary conformal field theories in gauge/gravity duality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1