Nonlinear modeling of measurement errors in gateway energy meters

Q4 Engineering Measurement Sensors Pub Date : 2024-07-30 DOI:10.1016/j.measen.2024.101286
Yuanrui Hong
{"title":"Nonlinear modeling of measurement errors in gateway energy meters","authors":"Yuanrui Hong","doi":"10.1016/j.measen.2024.101286","DOIUrl":null,"url":null,"abstract":"<div><p>In order to clarify the quantitative relationship between grid parameters and measurement errors of gateway energy meters, and accurately predict the dynamic measurement errors of gateway energy meters, the author proposes a nonlinear modeling of measurement errors of gateway energy meters. Firstly, elaborate on the NARX prediction model to clarify the basic structure of the nonlinear model; Then propose the process of modeling measurement errors; Finally, through testing, identify the main power grid parameters that affect measurement errors and the optimal structure of the model. The experimental results indicate that: The comparison between the true measurement error of two electricity meters and the measurement error calculated by the nonlinear estimator shows that the Hammerstein Weiner estimator has the highest fitting degree to the true measurement error curve, with fitting degrees of 82.21 % and 85.38 % for the measurement errors of 0.2S and 0.5S electricity meters, respectively. The prediction fit of the NRAX model based on the Hammerstein Weiner nonlinear estimator reaches about 81 % under different load conditions.</p></div><div><h3>Conclusion</h3><p>The model determined by this method can accurately predict the dynamic measurement error of the energy meter, and the research results have positive significance for improving the efficiency of gate energy meter calibration and identifying gate energy meter faults.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"35 ","pages":"Article 101286"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002629/pdfft?md5=d2dd4dececeef66d16da713391b576e8&pid=1-s2.0-S2665917424002629-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In order to clarify the quantitative relationship between grid parameters and measurement errors of gateway energy meters, and accurately predict the dynamic measurement errors of gateway energy meters, the author proposes a nonlinear modeling of measurement errors of gateway energy meters. Firstly, elaborate on the NARX prediction model to clarify the basic structure of the nonlinear model; Then propose the process of modeling measurement errors; Finally, through testing, identify the main power grid parameters that affect measurement errors and the optimal structure of the model. The experimental results indicate that: The comparison between the true measurement error of two electricity meters and the measurement error calculated by the nonlinear estimator shows that the Hammerstein Weiner estimator has the highest fitting degree to the true measurement error curve, with fitting degrees of 82.21 % and 85.38 % for the measurement errors of 0.2S and 0.5S electricity meters, respectively. The prediction fit of the NRAX model based on the Hammerstein Weiner nonlinear estimator reaches about 81 % under different load conditions.

Conclusion

The model determined by this method can accurately predict the dynamic measurement error of the energy meter, and the research results have positive significance for improving the efficiency of gate energy meter calibration and identifying gate energy meter faults.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网关电能表测量误差的非线性建模
为了明确电网参数与网关电能表测量误差之间的定量关系,准确预测网关电能表的动态测量误差,笔者提出了网关电能表测量误差的非线性建模方法。首先阐述 NARX 预测模型,明确非线性模型的基本结构;然后提出测量误差建模过程;最后通过试验,确定影响测量误差的主要电网参数及模型的最优结构。实验结果表明将两块电表的真实测量误差与非线性估计器计算出的测量误差进行比较,结果表明哈默斯坦-韦纳估计器与真实测量误差曲线的拟合度最高,对 0.2S 和 0.5S 电表测量误差的拟合度分别为 82.21 % 和 85.38 %。基于 Hammerstein Weiner 非线性估计器的 NRAX 模型在不同负荷条件下的预测拟合度达到 81 % 左右。结论该方法确定的模型可以准确预测电能表的动态测量误差,研究成果对提高电能表校验效率、识别电能表故障具有积极意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Augmented and virtual reality based segmentation algorithm for human pose detection in wearable cameras Exploring EEG-Based biomarkers for improved early Alzheimer's disease detection: A feature-based approach utilizing machine learning Deep learning model for smart wearables device to detect human health conduction Review and analysis on numerical simulation and compact modeling of InGaZno thin-film transistor for display SENSOR applications Artificial intelligence and IoT driven system architecture for municipality waste management in smart cities: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1