Mohammad Lameh, Patrick Linke, Dhabia M. Al-Mohannadi
{"title":"Carbon neutral energy systems: Optimal integration of energy systems with CO2 abatement pathways","authors":"Mohammad Lameh, Patrick Linke, Dhabia M. Al-Mohannadi","doi":"10.1002/aic.18568","DOIUrl":null,"url":null,"abstract":"<p>Reducing emissions requires transitioning towards decarbonized systems through avoiding, processing, or offsetting. Decisions on system design are associated with high costs which can be reduced at the planning stage through optimization. The temporal variations in power demand and renewable energy supply significantly impact the design of a low-emissions energy system. Effective decision-making must consider such impact in a comprehensive framework that accounts for the potential synergies between different options. This work presents a mixed integer linear programming model that considers the impacts of energy supply and demand dynamics to optimize the design and operation of an integrated energy system while adhering to a set emissions limit. The model integrates renewable power with CO<sub>2</sub> capture, utilization, and sequestration by considering H<sub>2</sub> production and storage. The case study showed including negative emissions technologies and CO<sub>2</sub> capture and processing with renewable energy allows achieving net zero emissions power.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18568","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing emissions requires transitioning towards decarbonized systems through avoiding, processing, or offsetting. Decisions on system design are associated with high costs which can be reduced at the planning stage through optimization. The temporal variations in power demand and renewable energy supply significantly impact the design of a low-emissions energy system. Effective decision-making must consider such impact in a comprehensive framework that accounts for the potential synergies between different options. This work presents a mixed integer linear programming model that considers the impacts of energy supply and demand dynamics to optimize the design and operation of an integrated energy system while adhering to a set emissions limit. The model integrates renewable power with CO2 capture, utilization, and sequestration by considering H2 production and storage. The case study showed including negative emissions technologies and CO2 capture and processing with renewable energy allows achieving net zero emissions power.
减少排放需要通过避免、处理或抵消向非碳化系统过渡。系统设计决策涉及高成本,可在规划阶段通过优化降低成本。电力需求和可再生能源供应的时间变化会对低排放能源系统的设计产生重大影响。有效的决策必须在一个全面的框架内考虑这种影响,并考虑不同方案之间的潜在协同效应。本研究提出了一个混合整数线性规划模型,该模型考虑了能源供需动态的影响,以优化综合能源系统的设计和运行,同时遵守设定的排放限制。该模型通过考虑 H2 的生产和储存,将可再生能源发电与 CO2 捕获、利用和封存整合在一起。案例研究表明,将负排放技术和二氧化碳捕集与处理技术与可再生能源结合起来,可以实现电力的净零排放。
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.