Ying Tian, Changqing He, Xincheng Zhang, Lin He, Zhenghe Xu, Hong Sui, Xingang Li
{"title":"Doping Si/O to enhance interfacial occupancy of demulsifiers for low-carbon breaking of water-in-heavy oil emulsions","authors":"Ying Tian, Changqing He, Xincheng Zhang, Lin He, Zhenghe Xu, Hong Sui, Xingang Li","doi":"10.1002/aic.18666","DOIUrl":null,"url":null,"abstract":"Separating water-in-heavy oil (W/HO) emulsions at low (room) temperature is challenging when exploiting heavy oil. We propose an adaptable strategy for constructing Si/O-doped demulsifiers. A nonionic demulsifier (APBMP) has been synthesized based on polysiloxane modified by allyl polyether and butyl acrylate. APBMP achieves 95.97% dehydration within 5 min for W/HO emulsions at 288.15 K and complete dehydration in 15 min at 323.15 K. Mechanistic studies found that doping Si/O into the demulsifier molecules increases the number of hydrogen bond sites, which enables the demulsifiers to quickly disperse natural stabilizers (e.g., asphaltenes) and replace them at the oil–water interfacial film. The demulsifiers prefer to occupy the interfacial sites rather than dissolve into the bulk oil or water phases. Driven by hydrogen-bond-dominated noncovalent interactions, the oil–water interfacial film is softened, reconstructed, and broken. These findings provide insights into developing novel materials for oil–water separations in a low-carbon way.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"12 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18666","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Separating water-in-heavy oil (W/HO) emulsions at low (room) temperature is challenging when exploiting heavy oil. We propose an adaptable strategy for constructing Si/O-doped demulsifiers. A nonionic demulsifier (APBMP) has been synthesized based on polysiloxane modified by allyl polyether and butyl acrylate. APBMP achieves 95.97% dehydration within 5 min for W/HO emulsions at 288.15 K and complete dehydration in 15 min at 323.15 K. Mechanistic studies found that doping Si/O into the demulsifier molecules increases the number of hydrogen bond sites, which enables the demulsifiers to quickly disperse natural stabilizers (e.g., asphaltenes) and replace them at the oil–water interfacial film. The demulsifiers prefer to occupy the interfacial sites rather than dissolve into the bulk oil or water phases. Driven by hydrogen-bond-dominated noncovalent interactions, the oil–water interfacial film is softened, reconstructed, and broken. These findings provide insights into developing novel materials for oil–water separations in a low-carbon way.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.